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INTRODUCTION 

The loss of biodiversity is a formidable challenge facing the world today. Species extinction 

rates are currently higher than they have been in the past 540 million years (Barnosky et al. 

2011). Many conservation objectives are centered on the preservation of biodiversity because it 

supports both ecosystem functioning and human well-being (Margule and Pressey 2000; Hooper 

et al. 2005; Mittlebach 2012; Naeem et al. 2009). Given limited time and resources, conservation 

practitioners often monitor a single focal species or a species of conservation concern (Caro 

2012). However, knowledge on a single species provides limited and biased information about 

biodiversity (Chao et al. 2006; Caro 2012). Therefore, to effectively conserve biodiversity, it is 

essential to have reliable models to predict changes in abundance of multiple species exposed to 

natural or anthropogenic changes (Buckland et al. 2005; Wiens et al. 2008; Tylianakis et al. 

2008; Tulloch et al. 2010). 

Recent quantitative advances provide new methods to accurately measure the abundance of 

multiple species while accounting for one of the main sources of error in abundance surveys - 

imperfect detection (Iknayan et al. 2014). Multispecies abundance models (MSAM) use a 

Bayesian N-mixture structure (Kéry et al. 2005), which relies on repeated counts, to estimate 

detection and calculate adjusted abundance estimates for multiple species. MSAMs incorporate 

sources of variation from both the biological processes that determine abundance on a landscape 

and observational processes to estimate detection and predict abundance. They have been used to 

assess various components of biodiversity, including the response of biological communities to 

different types of land-use practices (Yamura et al. 2012; Chandler et al. 2013). Current MSAMs 
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still fail to account for false positives, the detection of an individual that is not present because of 

either misidentification or double count of another individual (Iknayan et al. 2014). False 

positives can inaccurately inflate abundance and biodiversity estimates. Although they are well 

known errors, particularly in multispecies survey data, they are seldom accounted for in survey 

design or analysis (Royle and Link 2006; Miller et al. 2011). Nichols et al. (2000) provides a 

dependent-double observer (DDO) survey method to account for imperfect detection. Because it 

relies on two observers working collaboratively to identify individuals, the DDO method is 

suggested to reduce the occurrence of false positives will occur. To date, the DDO approach has 

not been combined with MSAMs. 

Livestock grazing is a disturbance mechanism that affects biodiversity. Livestock grazing is 

of special concern because it is one of the most common land uses worldwide (Raven 2002). In 

the United States, grazing occurs on approximately 40 percent of total land (Holechek et al. 

1998) and approximately 70 percent of land in the West (Fleischner 1994). Researchers have 

documented grazing effects on wildlife species of all vertebrate classes; grazing has been shown 

to both increase and decrease vertebrate species abundance, as well as alter species composition 

in communities (Fleischner 1994). Grazing can alter community dynamics and reduce an 

ecosystem’s resilience to environmental change (Folke et al. 2004). However, many studies that 

compare grazing effects focus on a single species and compare the effects of grazing techniques 

to greatly reduced or removed grazing. Much is still unknown about the whether the effects of 

grazing are similar across multiples species within a community (Krausman et al. 2009). In 

addition, although grazing has predictable effects on vegetation, it still remains unknown if these 

effects translate into changes in the abundance of multiple species. Given the economic and 

cultural importance of grazing to humans, these comparisons of existing grazing systems to 
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reduced or removed grazing are unrealistic. Because the persistence of grazing is likely in the 

future, it is important to close this gap in knowledge and understand how different grazing 

systems affect multiple wildlife species.  

In this thesis I explore a derivation of the MSAM using the DDO survey method to create a 

multispecies dependent double-observer abundance (MDAM) model. I use this tool to explore 

how two widely used grazing systems affect the abundance of eight songbird species with 

varying reliance on grassland vegetation in a sagebrush ecosystem. 
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CHAPTER 1: A MULTISPECIES DEPENDENT DOUBLE-OBSERVER MODEL: A NEW METHOD TO 

ASSESS CHANGES IN BIOLOGICAL COMMUNITIES 

INTRODUCTION  

Effective conservation of biodiversity, the abundance of individuals and species within a 

given area, requires reliable models to predict changes in the abundance of multiple species. 

Species have different life history strategies and often respond differently to natural and 

anthropogenic disturbances (Buckland et al. 2005; Wiens et al. 2008; Tylianakis et al. 2008; 

Tulloch et al. 2010). The underlying cause of changes in biodiversity may be complex. For 

example, abundance of one species may vary in response to changes in abiotic conditions. This 

can lead to changes in other species abundance through other biotic interactions. Multispecies 

abundance information can help disentangle these complex responses (Dorazio and Connor 

2014; Ockendon et al. 2014; Barnaguard et al. 2014). 

However, collecting multispecies abundance data can be time and effort intensive. Therefore, 

managers often rely on information about a single species that is thought to reflect the 

biodiversity of a community. Although these strategies can be cost-effective, they provide 

limited and potentially biased information about biodiversity (Chao et al. 2006; Caro 2012), as 

they are often selected for non-biological reasons (Simberloff 1998). Mutlispecies data, on the 

other hand, is thought to reflect larger ecosystem processes (Lambeck 1997). Empirical evidence 

suggests that if the multiple species are selected based similar life history traits (i.e., they are 

limited by the same biological processes), they can represent what is occurring in the community 

(Lindenmayer et al. 2014). Although multispecies approaches are useful, many multispecies 

studies fail to account for imperfect detection, which is particularly important when considering 

a wide variety of species with different detection probabilities. As the world continues to lose 

biodiversity at unprecedented rates (Hooper et al. 2005), it is essential for conservation 
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practitioners to have an accessible multispecies abundance modeling framework that addresses 

these issues.    

One of the main challenges associated with any abundance estimate is imperfect detection 

(Seber 1986; Seber 1992; Schwarz and Seber 1999). Detection has two components, availability 

and detectability. Availability refers to whether a species or individual of interest is present at a 

given site. Detectability is the probability an observer detects an individual during a survey. 

Imperfect detection results from two processes governing the components of detection (Table 1-

1): (1) biological processes that influence abundance and determine availability; and (2) 

observation processes that determine detectability, which can be affected by species, observer 

experience, time of day, and other factors (Farnsworth et al. 2002; Simons et al. 2007; Alldredge 

et al. 2007; Pacifici et al. 2008).  

Failing to account for imperfect detection when monitoring multiple species can lead to 

incorrect inferences about drivers of change in abundance or biodiversity (Buckland et al. 2005; 

Kéry and Schaub 2012; Iknayan et al. 2014). Imperfect detection from different sources can 

produce similar abundance patterns that result from entirely different mechanisms. For example, 

a common species may be consistently available (i.e., present), but have a low detectability 

because of cryptic behavior. A rare species, on the other hand, may be mostly unavailable across 

sites (i.e., present only in a low density), but have high detectability as a result of conspicuous 

vocalization. All of these factors can differentially affect the observation of each species, 

producing different observed counts, and ultimately abundance estimates. When quantifying 

biodiversity it is important to keep this in mind and avoid unrealistic assumptions that detection 

of all species is a result of the same processes. However, this is beyond the consideration of most 

traditional biodiversity estimation methods (Iknayan et al. 2014). 
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Recent abundance estimation methods based on N-mixture models have expanded from a 

single species (Royle 2004) to a multispecies context (Kéry et al. 2005). N-mixture models 

produce adjusted abundance estimates by using information contained within repeated counts to 

estimate detection. The structure is hierarchical and uses information from the biological process 

and observational process to estimate detection and predict abundance. Multispecies abundance 

models (MSAMs) are an emerging method that use this N-mixture framework to estimate 

abundance and detection of multiple species from spatially and temporally replicated counts 

(Kéry and Schaub 2012). MSAMs can incorporate species-specific or site-specific covariates, 

such as habitat type, as part of the biological or observation process, and account for differences 

in these processes for each species (Iknayan et al. 2014). As a result, MSAMs are being used to 

assess various components of biodiversity, including the response of forest bird biodiversity to 

different types of land-use practices (Yamura et al. 2012; Chandler et al. 2013), community 

assembly of forest birds (Barnagaud et al. 2014), and species interactions (Dorazio and Connor 

2014). 

One of the major limitations of current MSAMs is that they do not address imperfect 

detection in the form of false positive errors (i.e., the detection of an individual that is not present 

because of either misidentification or double count of another individual; hereafter “false 

positives”) (Iknayan et al. 2014). False positives have been documented in many different types 

of ecological survey data (Miller et al. 2015). Royle and Link (2006) suggested that false 

positives due to misidentification can be particularly prevalent in multispecies data. If not 

accounted for, even small rates of false positives can lead to substantial biases (Royle and Link 

2006; Fitzpatrick et al. 2009; Miller et al. 2011; Connors et al. 2014). There are design-based 

(e.g., Miller et al. 2012; Molinari-Jobin et al. 2012) and statistical methods (e.g., Royle and Link 
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2006) to account for sources of variation that lead to false positives. However, the use of these 

methods is not widespread. Most often, researchers assume that false positives do not occur 

(Nichols et al. 2000; Royle and Link 2006; Miller et al. 2012).  

The dependent double-observer (DDO) method is a survey method that reduces false positive 

observations by using removal-based methodology to calculate detectability (Nichols et al. 

2000). The method uses two observers with different roles. The primary observer dictates all 

individuals he/she observes during a survey. The secondary observer notes the identity and 

location of the individuals observed by the primary observer. In addition, the secondary observer 

notes individuals missed by the primary observer. This process relies on the secondary observer 

verifying the observations of the primary observer, making an incorrect detection in the majority 

of the observations less likely than with a single observer acting alone (Nichols et al. 2000). The 

observation outcomes, primary observer detects an individual or secondary observer detects an 

individual that the primary missed, must be correctly recorded. Once that occurs, the observers 

have flexibility to collaborate to identify characteristics of the individuals (e.g., species, sex). 

The DDO method has been successfully applied in arid and woodland environments to estimate 

avian abundance (Nichols et al. 2000; Kissling and Garton et al. 2006, Tipton et al. 2009) and 

occupancy (Tipton et al. 2008). 

Although recent studies have used MSAMs to track biodiversity in response to different land 

use types (Yamura et al. 2012; Chandler et al. 2013), none have provided design-based methods 

to reduce false positives. Here, I provide an expansion of the MSAM framework to account for 

false positives by incorporating the design-based DDO method in a multispecies, multi-season 

framework. I simulated abundance and count data for four species data to develop this 

multispecies dependent double-observer abundance model (MDAM). I then applied the MDAM 
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to case study data collected on prairie songbirds over multiple years on private and public lands 

in eastern Montana. Songbirds are becoming increasingly important indicators in biodiversity 

monitoring (Iknayan et al. 2014). Studies have shown that changes in songbird abundance and 

biodiversity are reliable indicators of impacts resulting from anthropogenic disturbance and land 

management in numerous ecosystems (e.g., Mac Nally 1997; Bradford et al. 1998; Canterbury et 

al. 2000; Schulze et al. 2004; Coppedge et al. 2006; Coppedge et al. 2008). With the reduction in 

false positives, the MDAM can provide more reliable estimates and rigorous inference about 

changes in communities than previously available. Additionally, MDAM opens up the possibility 

of large-scale, multispecies, multi-season biodiversity monitoring.  

 
METHODS 

Bayesian Statistics Terms 

Bayesian statistical inference is based on three primary pieces of information: a prior 

distribution (hereafter “prior”), which is a probability distribution that represents what is known 

about a parameter prior to conducting a study; a likelihood, which is a probabilistic statement 

relating observed data to unknown model parameters; and a posterior distribution, which is the 

probability distribution representing a parameter estimate and is proportional to the product of 

the prior and likelihood. The information from the density of the distribution can be used to 

determine how much support there is for a point estimate (i.e., the most support is shown by the 

highest density of the distribution). The density also provides information about how likely it is 

that an estimate is within a given range of values. In Bayesian inference, this range is known as a 

credible interval (CRI). A Bayesian CRI of 95% means that there is a 0.95 probability that the 

true value of the estimated parameter is within the given range.  
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MDAM Basic Structure 

To develop the MDAM, I extended previous approaches to similar multispecies abundance 

problems (e.g., Yamura et al. 2012; Chandler et al. 2013). The basic structure of the MDAM 

includes two hierarchical processes: a biological and observation process. The biological process 

estimates the true abundance of multiple species on a landscape. This process determines 

whether an individual or species is present at a given location. The observation process estimates 

the probability of detection using the outcome of two observers using the DDO method and the 

true abundance from the biological process. The MDAM accounts for imperfect observation by 

estimating detectability, or the probability that observer detects an individual during a survey. 

This is calculated from the different observation outcomes between the two observers in the 

DDO method. The structure of each hierarchical process within the MDAM is described below.  

Modeling Abundance  

I considered the likelihood for the latent, or true, abundance of species i at plot j (𝑁𝑁𝑖𝑖𝑖𝑖) to be a 

function of a Poisson random variable with mean abundance per plot (𝜆𝜆𝑖𝑖𝑖𝑖) (Equation1). I used a 

Poisson distribution because I assumed that individuals and species of interest were randomly 

distributed across plots (Royle 2004). 

Equation 1: Biological process 

 

  

𝑁𝑁𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝜆𝜆𝑖𝑖𝑖𝑖) 

Modeling Observations  

The DDO survey method produces observations with three possible outcomes: 1) the primary 

observer detects an individual; 2) the secondary observer detects an individual that the primary 
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observer misses; and 3) both the primary and secondary observer fail to detect an individual. 

Each of these outcomes has a different probability of occurring because they are based on a 

combination of events resulting from two observers. Outcome 1 is based only on the primary 

observer’s ability to detect an individual (𝑝𝑝1). Outcome 2 is a product of the probability that the 

primary observer did not detect an individual (1 − 𝑝𝑝1) and the secondary observer’s ability to 

detect an individual (𝑝𝑝2). Outcome 3 is a product of neither observer detecting an individual 

(1 − 𝑝𝑝1) ∗ (1 − 𝑝𝑝2). Because this process has multiple outcomes with multiple probabilities, I 

considered it a multinomial process. I modeled the observed abundance of species i at plot j at 

survey replicate k (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖) as a multinomial random variable that is a function of latent abundance 

(𝑁𝑁𝑖𝑖𝑖𝑖) (Equation 1), and three multinomial cell probabilities 𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖 that represent the DDO survey 

outcomes (Equation 2).  

Equation 2: Observation process  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑁𝑁𝑖𝑖𝑖𝑖,  𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖� 

Simulated Data Set 

I simulated data to assess the performance of the MDAM. I used a random Poisson 

distribution to model true abundance for four hypothetical species randomly distributed across 20 

plots. Count data were generated using a random multinomial distribution with the three cell 

probabilities that corresponded to the outcomes of the DDO process, described above. The count 

data reflected two observers using the DDO method on three replicate visits at each of the 20 

plots over a single season. Detection was held constant at 0.3 for the primary observer and 0.5 

for the secondary observer. I considered differences in individual observer effect as the only 

source of variation in detectability in the observation process. I assumed that all four species 

were available and observed on each plot during each survey replicate. 
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MDAM Performance 

I used program R (version 3.2.0) and JAGS (Plummer 2013) to run the MDAM with this 

simulated data in a Bayesian hierarchical framework (see Appendix 1 for code). I generated three 

Markovian chains for 50,000 iterations with a period of 5,000 burn-in iterations that were 

discarded. I specified over-dispersed starting values for three Markovian chains, which allows 

for more reliable information about model performance and aids in diagnosing convergence 

(King et al. 2010). To assess chain convergence, I used two diagnostics from three independent 

Markovian chains: (1) trace plots, which show all of the values of the Markovian chains during 

the 50,000 iterations, to visually inspect chain mixing (King et al. 2010); and (2) the 𝑅𝑅� statistic, 

an estimate of the ratio of the among-chain variance to the within-chain variance (Brooks and 

Gelman 1998). Chain mixing indicates how well multiple, independent Markovian chains 

converge on a similar range of values.  

I used simulated data to examine the precision and accuracy of the MDAM. I compared true 

abundance and detection values I generated to the MDAM estimates of abundance and detection 

to measure precision and determine if the abundance values from the simulations contained the 

true abundance values. To assess the ability of the model to recover truth, I measured coverage, 

or the percent of time the 95% CRI of the MDAM estimates of abundance and detection included 

the known true values of abundance and detection. I measured accuracy by calculating the mean 

absolute percent error of the MDAM parameter estimates for abundance and detection. The mean 

absolute percent error was calculated as the absolute value of the difference between the true 

parameter value and MDAM parameter estimates divided by the true parameter value, all 

multiplied by 100. To ensure that the MDAM could accurately predict parameters under a wide 

range of possible survey outcomes, I ran the MDAM 100 times with different starting values 
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each time. I summarized the results of the 100 simulations to assess overall MDAM 

performance. 

MDAM Extension 

Real world data often include more variation in both the biological and observational process 

than the basic MDAM structure describes. The MDAM can accommodate a wide variety of 

extensions to account for this variation, which allows for more accurate and precise inference 

about multispecies communities. 

Applying the MDAM Extension 

To test the applicability of potential MDAM extensions, I applied the MDAM to a two-year 

case study using eight avian species of prairie songbird communities in eastern Montana. I 

selected the eight species to represent the spectrum of vegetation use present in sagebrush 

ecosystems. They range from: species dependent entirely on sagebrush, Brewer’s sparrow 

(Spizella breweri); to species dependent entirely on grassland vegetation, chestnut-collared 

longspur (Calcarius ornatus), horned lark (Eremophila alpestris), lark bunting (Calamospiza 

melanocorys), McCown's longspur (Rhynchophanes mccownii), vesper sparrow (Pooecetes 

gramineus), and western meadowlark (Sturnella neglecta); to a species dependent on both 

sagebrush and grassland vegetation, the brown-headed cowbird (Molothrus ater). The structure 

of the MDAM extension is described below. 

Modeling Abundance  

True abundance of species i at plot j in year y (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖), was modeled as a Poisson random 

variable with mean species abundance per plot in each year (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖) (Equation 3). I included land 

ownership as a categorical covariate to account variation in the abundance of these eight species 
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because it has been shown that variation in land management associated with land ownership can 

change the potential of a landscape to support biological communities (Scott et al. 2001). I let the 

effect of land ownership vary by species i to capture the variation in species’ responses to land-

use practices or other variables associated with ownership. I used a log link function to relate 

land ownership to abundance using a linear predictor of mean species abundance per plot in each 

year (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖). I modeled the mean species abundance per plot in each year as a function of the 

linear combination of a species-specific intercept (𝛽𝛽0𝑖𝑖), plus a fixed-effect of land ownership that 

varied by species (𝛽𝛽1𝑖𝑖), a fixed effect for year that varied by species (𝛽𝛽2𝑖𝑖), plus a random effect 

for plot (𝛼𝛼𝑗𝑗) to account for variation not otherwise explained (Equation 4). 

Equation 3: Biological process 

 

  

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖) 

Equation 4: Mean species abundance  

  

log�𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑖𝑖 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝛼𝛼𝑗𝑗   

I used vague normal distributions N (0, 1,000) for the priors of the coefficients of the linear 

predictor of the mean species abundance per plot in each year (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖). For the random plot effect, 

I used a uniform distribution ranging from 0 to 100 for the prior on the dispersion parameter.  

Modeling Observations  

I used the basic MDAM structure to model observations for the case study data. I modeled 

the observed abundance of species i at plot j in year y at survey replicate k (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) as a 
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multinomial random variable that is a function of true abundance (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖) (Equation 3) and cell 

probabilities (𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖) based on the DDO surveys described above (Equation 2).  

Equation 5: Observation process 

  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖,  𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖�    

I accounted for variation in the observation process by including both individual observer 

effects and species effects. I did not include additional explanatory covariates in the observation 

process because additional sources of variation were reduced by using timing and weather 

restrictions for all DDO surveys, described in Case Study Data Set below. I used vague normal 

distributions N (0, 10,000) for the priors of detectability for each observer that informed the 

multinomial cell probabilities. 

Case Study Data Set 

Observers collected counts of the eight sagebrush songbird species described above using the 

DDO method during the peak songbird breeding season (May through July) in 2013 and 2014. 

The surveys were conducted on approximately 1,000 ha of private and public rangelands. This 

included 25 ha plots with 40 on private land and 40 on public land (a total of 80 plots) in Golden 

Valley and Musselshell counties, Montana, USA. The area is dominated by sagebrush (Artemsia 

tridentata spp. wyomingensis) and native grassland. The plot size was based on covering 125 m 

from a survey transect at all times (Figure 1-1), because ≥95% of songbird detections are within 

125 m of the observer (Ralph et al. 1995). Observers surveyed each plot three times 

(approximately once a month in May, June, and July) over the breeding season within a year. 

Surveys were conducted between approximately 0600 and 1100 hours. Surveys were not 

conducted during inclement weather or when winds were greater than 15 mph. 
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MDAM Extension Performance 

I used the same specifications (three Markovian chains run for 50,000 iterations with a period 

of 5,000 burn-ins) as the basic MDAM to run the MDAM extension. Using program R and JAGS 

(see Appendix 1 for code), I generated over-dispersed starting values for three Markovian chains 

and ran them for 50,000 iterations with a period of 5,000 burn-in iterations that were discarded. I 

used visual inspection trace plots (King et al. 2010) and the 𝑅𝑅� statistic (Brooks and Gelman 

1998) to examine parameter convergence. I also examined the posterior density distributions to 

check for smooth, uni-modal posterior distributions. A uni-modal posterior distribution indicates 

that a single, predicted value of a parameter (the parameter estimate where the peak of the 

distribution occurs) has the highest probability of support.  

MDAM Assumptions  

Three main assumptions, based on the assumptions of the N-mixture model, underlie the 

MDAM: (1) the sampled population remains closed to immigration, emigration, birth and death 

for the duration of sampling activities; (2) individual and species’ detectability is constant among 

repeated sampling occasions; and (3) the data of the biological and observation processes are 

adequately described by the chosen distribution. To address assumption 1, I considered each 

period of time where it was biologically relevant to assume closure separately. For the simulated 

data, that was a single breeding season. For the case study data, I considered each breeding 

season separately and surveyed only adults during the peak breeding season for migratory 

songbirds in Montana (May through July) (Montana Bird Distribution Committee 2012). I 

modeled detectability as constant to address assumption 2 for simulated data. For the case study, 

I addressed assumption 2 by sampling over a short period of time, where it is likely that detection 

remained constant, and using standardized timing and weather restrictions for all DDO surveys 



13 
 

to minimize variation in detection probability. I addressed assumption 3 with the simulated data 

by simulating data that reflected the assumption of the distributions (i.e., animals were randomly 

distributed on the landscape). For the case study data I added covariates that explained extra 

variation not accounted for by the Poisson and multinomial distributions.  

In addition to the two MDAM general assumptions, there are three associated with the DDO 

method: (3) primary observer detects individuals independent of the secondary observer; (4) each 

observer’s ability to detect individuals is the same for both the primary and secondary observer 

roles; and (5) primary and secondary observer have the same range of distance in which they can 

detect individuals (Nichols et al. 2000). I used a walking transect with the DDO method. This 

helped ensure independent detection by the primary observer and address assumption 3 because 

the primary observer was always walking in front of the secondary observer (Figure 1-1). I 

addressed assumption 4 by having the primary and secondary observers switch roles during 

consecutive surveys. Therefore, each observer spent roughly equal amounts of time in each role. 

To address assumption 5, I confined surveys to a fixed area, 125 m on either side of the survey 

transect (Figure 1-1), as suggested by Nichols et al. (2000).  

RESULTS 

Basic MDAM  

The MDAM performed well with simulated data. The Markovian chain convergence was 

reached for abundance and detection by the 5,000 iteration burn-in period. Figure 1-2 (A) shows 

an example of the Markovian chain convergence for the abundance estimates for each 

hypothetical species. Good convergence is represented by chains with considerable overlap, so 

that all chains appear almost indistinguishable from one another. In addition, all 𝑅𝑅� values were 

near one (< 1.01). Values of 𝑅𝑅� close to 1 indicate that the Markovian chains have converged on 
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the single posterior value. Coverage for all abundance estimates for 100 repeated simulations 

was 0.943, meaning that 94.3% of the 95% CRIs of the predicted abundance values from the 

simulations contained the true abundance value. Coverage for detection was similarly high at 

0.945. The MDAM also provided accurate estimates. The vast majority of abundance estimates 

(92.2%) had a mean absolute percent error between 0 and 20% (Table 1-2). The mean absolute 

percent errors for detection estimates were less than or equal to 5% (Table 1-3).  

MDAM Extension 

The MDAM extension performed well with the case study data. The Markovian chains 

convergence was reached for all parameters: abundance, detection, and effect of private land. 

Figure 1-2 (B) shows the chains for the predicted abundance of the avian species. In addition, all 

𝑅𝑅� values were near one (< 1.01). Posterior distributions were smooth and uni-modal, suggesting 

good model performance and predictive power. Figure 1-3 shows the posterior density 

distributions of the abundance estimates for the eight avian species that were analyzed with the 

MDAM. 

 The case study data consisted of 11,267 observations in 2013 and 12,175 observations in 

2014 of the eight sagebrush songbird species (Table 1-4). In both 2013 and 2014 total 

observations were higher on private land (6,080 and 6,878, respectively) than public land (5,187 

and 5,297, respectively), although this pattern differed by species. In 2013 and 2014, observers 

recorded more Brewer’s sparrows, brown-headed cowbird, lark bunting, vesper sparrow, and 

western meadowlark on public land than on private land. In contrast, in 2013 and 2014 there 

were more horned larks and McCown’s longspurs observed on private land than public land. The 

observed number of chestnut-collared longspurs was similar between land ownership and years.  
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Average detection probabilities varied greatly between observers and species, ranging from 

0.006 to 0.79 (Figure 1-4). Lark buntings had the lowest average detection probability (0.05), 

followed by brown-headed cowbird (0.23), chestnut-collared longspur (0.27), vesper sparrow 

(0.37), western meadowlark (0.37), Brewer’s sparrow (0.39), horned lark (0.51), and McCown’s 

longspur (0.58).  

Predicted abundance patterns were similar for 2013 and 2014 (Figure 1-5; Table 1-5). There 

were significantly more (i.e., CRIs did not overlap) individuals predicted on public land in 2013 

for lark bunting and western meadowlark than private land. However, this pattern did not remain 

in 2014. The difference in abundance for both lark bunting and western meadowlark was not 

significant between public and private lands. On the other hand, there were significantly more 

McCown’s longspurs per 25 ha predicted on private land in 2013 and 2014 than public land. For 

all other species, brown-headed cowbird, Brewer's sparrow, chestnut-collared longspur, horned 

lark, and vesper sparrow, there was no significant difference in 2013 and 2014 between public 

land and private land (Table 1-5).  

Land ownership had positive, negative, and neutral effects on the eight species examined 

(Figure 1-6). The results in the remainder of this section are presented as an estimate from the 

MDAM (on the link scale) and a 95% CRI in brackets. There was no significant effect (i.e., the 

CRI overlapped with 0 and the most support in posterior distribution was for values at or near 0 

on the link scale) on the estimated abundance for two of the eight species examined: Brewer's 

sparrow (-0.05 [-0.30 – 0.18]) and vesper sparrow (-0.03 [-0.27 – 0.21]). Private land ownership 

had a significant positive effect on the predicted abundance of chestnut-collared longspur (0.43 

[0.16 – 0.70]), horned lark (0.37 [-0.13 – 0.62]), and McCown's longspur (1.26 [1.02 – 1.51]). 

Private land ownership had a significant negative effect on three species: brown-headed cowbird 
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(-0.49 [-0.79 – -0.20]), lark bunting (-0.74 [-1.01 – -0.48]), and western meadowlark (-0.49 [-

0.73 – -0.23]).  

DISCUSSION 

 The MDAM extends previous MSAM models to include a removal-based survey method 

that reduces the rate of false positives. It provides flexibility for synthesizing multiple sources of 

data that are hindered by imperfect detection from biological (e.g., differences in abundance that 

arise from different land use) and observation process (e.g., observer performance). It does this 

all in a framework that accounts for imperfect detection. Although it is similar to the multinomial 

abundance model published by Kéry and Royle (2010) and the MSAM published by Chandler et 

al. (2013), it is the first to implement the DDO methodology to reduce the rate of false positives 

in the MSAM structure.   

All performance diagnostics indicated that the MDAM was an accurate and faithful model. 

This is likely a result of the large amount of information from the DDO method used to model 

the observation process. This method provided detailed encounter history information for each 

individual that was detected during surveys. In the MDAM extension, each encounter history 

incorporated individual observer effects and species effects. The MDAM consistently predicted 

precise values that contained the true parameters the majority of the time when it was run 100 

times with different starting values, indicating that the predications are reliable. Similarly, the 

convergence diagnostics and posterior distributions of the MDAM extension indicated that the 

MDAM extension converged well on posterior distribution estimates. 

The predictions of the MDAM extension were biologically sound and congruent with other 

studies. The community composition of this prairie system predicted by the MDAM extension is 

similar to songbird communities in nearby sagebrush and mixed-grass communities (Bradford et 
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al. 1998; Reinkensmeyer et al. 2007; Jones et al. 2010). The most abundant species, McCown’s 

longspur, western meadowlark, vesper sparrow, and Brewer’s sparrow, were consistent with 

other findings (Bradford et al. 1998; Jones et al. 2010). I found that land ownership had a neutral 

or positive effect on predicted abundance for the majority of species, five of eight, which I 

investigated. The positive effect of private land on chestnut-collared longspur, horned lark, and 

McCown’s longspur abundance was consistent with other findings about private lands, which 

often support more species than public or protected lands (Scott et al. 2001). 

The MDAM provides many benefits that resulted from both the MDAM model structure and 

the DDO survey method. The MDAM structure does not require replication at some sample plots 

like other MSAMs because of the detectability information contained within the DDO 

observations. Therefore, it is possible that field efforts could be reduced with similar information 

yield, which is useful when trying to allocate limited personnel and financial resources. Using 

the DDO method, observers can work together to identify a bird and ensure double counting is 

not occurring, which has the ability to reduce false positives. The ability of the observers to work 

together on identification, with the stipulation that the observation outcome has to be correctly 

recorded, also allows new observers to be quickly trained in bird identification. In addition, 

working in pairs for the DDO method in remote field locations provides a safety advantage.  

The MDAM structure is generalizable and can be applied to many different systems to 

estimate multispecies abundance. The multispecies abundance data from the MDAM can be used 

to derive abundance-based biodiversity metrics that summarize species richness and evenness, or 

relative abundance to other species. It is possible to relax many of the assumptions of the 

MDAM presented in this paper. For example, the assumption that every species is available for 

sampling during the observation process is unrealistic (Dorazio and Royle 2005). However, this 
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can be addressed in the MDAM by adding in another level to the hierarchical model that 

represents the animal’s availability, as described by Kéry and Schaub (2012). In my case study 

example, the only explanatory covariate for latent abundance is land ownership, which may not 

be realistic in many ecosystems (Lovett-Doust and Kuntz 2001). The MDAM can accommodate 

additional biotic or abiotic covariates that might be plot- and ecosystem-specific and help explain 

variation in abundance. In addition, the reliable abundance estimates from the MDAM can be 

used in an integrated population model (Kéry and Schaub 2012). This can provide a much clearer 

picture of the mechanisms driving changes in abundance and biodiversity. The MDAM can also 

be used to concurrently track the abundance of a single species and a biodiversity parameter of 

interest. If monitored over multiple seasons, this can provide a potential method to determine if a 

focal species reliably tracks changes in a community. Finally, although the DDO was developed 

as a bird survey method (Nichols et al. 2000), it can be used on additional taxa. Double-observer 

methods have already been used for marine and terrestrial mammals (Buckland et al. 2010; 

Griffin et al. 2013; Hoef et al. 2014) and amphibians (Becker et al. 2013).   

There are some important limitations of the MDAM to consider. First, I was not able to 

quantify the extent to which the DDO method reduces false positives. As Nichols et al. (2000) 

stated, two observers, rather than a single observer making a decision about the identity or 

presence of a species, is an improvement in reducing false positives. In addition, the assumption 

that detection probability is the same for an observer whether they are in the role of primary or 

secondary observer (assumption 5) may not be true. Mills and Knowlton (1989) showed that 

observer performance improves when observers are aware they are being monitored.  

The patterns of abundance of multiple species are fundamental to understanding biodiversity. 

The MDAM provides a framework of reliable multispecies abundance predictions, which I have 
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shown using simulated and case-study data, and can accommodate extensions that have 

important implications for conservation. The MDAM has the flexibility to incorporate long-term, 

large-scale, and multi-taxa data. It can provide data-driven solutions to reduce cost and effort put 

into biodiversity monitoring while still providing accurate, high-resolution data. In addition, 

there may be further extensions of the MDAM, such as methods to quantify the rates of false 

positives, which would allow for an unprecedented accuracy in multispecies monitoring. Given 

the field and data benefits of the MDAM and its ability to accommodate extensions, the MDAM 

can be an instrumental tool for the future of biodiversity conservation.   
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FIGURES AND TABLES 

 
Figure 1-1. Dependent double-observer method. The primary (open circle) and secondary 

observer (dashed circle) walk single-file along the transect (dotted line) within a 500 m x 500 m 

sampling plot. Observers survey up to 125 m on either side of the transect. All surveys start at 

the lower right corner of the transect. Red arrows indicate direction of travel. 
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A)  

B)  

Figure 1-2. Trace plots showing all of the values of the three Markovian chains during the 

50,000 iterations run for eight avian species. The x-axis represents the number of iterations after 

a burn in period of 5,000 iterations (not pictured) and the y-axis represents the value of the chain. 

A) Trace plots of abundance estimates (lambda) for four species (identity represented by the 

number in brackets []) derived from simulated data. B) Trace plots of non-transformed (log) 

mean abundance value for each species (λijk) from data collected near Roundup, Montana in 

2013 and 2014.  
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Figure 1-3. The posterior distribution estimates of average abundance in 2013 on public land for 

eight avian species. Estimates are derived using the multispecies dependent double-observer 

abundance model and data collected near of Roundup, Montana in 2013. 
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Figure 1-4. The average probability (right y-axis) that an individual observer (x-axis) detected 

each avian species (left y-axis) during dependent double-observer surveys conducted on public 

and private lands near Roundup, Montana, in 2013 and 2014. Black bars represent the 95% 

Bayesian credible intervals of the estimate.  
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Figure 1-5. The average estimated abundance per 25 ha on public and private land for eight 

avian species. Black bars represent the 95% Bayesian credible intervals of the estimate. 

Predictions are derived from the multispecies dependent double-observer abundance model using 

data collected near Roundup, Montana in 2013 and 2014.   
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Figure 1-6. The effect of private land ownership on average abundance compared to public land 

ownership for eight songbird species on public and private lands near Roundup, Montana, in 

2013 and 2014. The effect values are on the link scale.  
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Table 1-1. Two processes, biological and observation, influence the two components of 

detection, availability and detectability. Detection error results from two specific combinations 

of these two processes.  

Biological Process Observation Process 
Detection error 

present? Detection Outcome 
Availability1 Detectability2 

Outcome Observation 

Available (present) 
Detected No True positive 

Not detected Yes False negative 

Not available (not 
present) 

Detected Yes False positive 

Not detected No True negative 
1The probability that an individual is present and available for observation at a plot. Independent of detectability. 
2The probability an observer detects an individual. Dependent on availability. 
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Table 1-2. Mean absolute percent error for abundance estimates from the multispecies dependent 

double-observer abundance model. Data were simulated 100 times for four species surveyed on 

20 plots three times over a season by two observers. 

Mean absolute percent 
error % of simulations1 

0-20 92.2 

21-40 5.7 

41-60 1.1 

61-80 0.5 

81-100 0.2 

>100 0.3 

1% of simulations represents the percent of simulations out of 8,000 that fall within the given range. 
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Table 1-3. Mean absolute percent error for detection probability estimates from the multispecies 

dependent double-observer abundance model. Data were simulated 100 times for four species 

surveyed on 20 plots three times over a season by two observers.  

Mean absolute percent 
error % of simulations1 

1 51.0 

2 30.5 

3 14.5 

4 3.5 

5 0.5 

1% of simulations represents the percent of simulations out of 200 that fall within the given range. 
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Table 1-4. Summary of observations of eight sagebrush songbirds surveyed using the dependent 

double-observer method in 2013 and 2014 near Roundup, MT. Plots refers to the number of plots 

out of 40 in which the species was detected. Observed refers to the total number of individuals 

observed during the three sampling occasions. 

 
 

Common Name 

2013 2014 
Public  Private Public Land Private 

Plots  Observed Plots  Observed Plots Observed Plots  Observed 

Brewer’s sparrow 35 979 27 804 33 1,101 24 927 

Brown-headed 
cowbird 30 200 17 90 26 203 20 120 

Chestnut-collared 
longspur 16 168 19 272 5 209 16 197 

Horned lark 33 597 37 1,015 31 870 37 1,075 

Lark bunting 17 345 17 113 19 352 20 234 

McCown’s 
longspur 18 1,037 31 2,450 15 726 29 2,824 

Vesper sparrow 39 1,066 39 936 38 1,057 37 1,030 

Western 
meadowlark 40 795 40 400 40 779 39 471 

Totals  5,187  6,080  5,297  6,878 
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Table 1-5. The average estimated abundance (𝑁𝑁�) and ninety-five percent credible intervals (CRI) 

per 25 ha on public and private land for eight avian species. Predictions are derived from the 

multispecies dependent double-observer abundance model using data collected near Roundup, 

Montana in 2013 and 2014.  

 
 

Common 
Name 

2013 2014 
Public  Private  Public Private 

𝑁𝑁� 95% CRI 𝑁𝑁� 95% CRI 𝑁𝑁� 95% CRI 𝑁𝑁� 95% CRI 

Brewer’s 
sparrow 16.9 14.0-20.1 15.9 13.2-19.0 14.2 11.2-17.8 13.4 10.4-16.9 

Brown-headed 
cowbird 5.2 3.9-6.9 3.2 2.3-4.3 6.8 4.1-11.0 4.2 2.5-6.9 

Chestnut-
collared 
longspur 

3.0 2.3-3.7 4.6 3.7-5.7 2.1 1.4-2.9 3.2 2.2-4.5 

Horned lark 11.3 9.4-13.4 16.4 13.6-19.5 14.4 11.5-17.9 20.9 16.7-26.0 

Lark bunting 21.5 15.1-30.8 10.2 6.9-15.0 4.4 2.4-7.3 2.1 1.1-3.6 

McCown’s 
longspur 13.0 10.8-15.5 46.2 38.8-54.6 13.9 11.2-17.1 49.4 40.3-59.9 

Vesper sparrow 18.2 15.1-21.7 17.6 14.6-21.0 18.7 14.8-23.4 18.1 14.3-22.7 

Western 
meadowlark 16.0 13.1-19.4 9.8 8.0-12.0 24.9 18.8-32.6 15.3 11.5-20.1 
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CHAPTER 2: ASSESSING SONGBIRD RESPONSE TO COMMON GRAZING PRACTICES 

INTRODUCTION  

Livestock grazing is one of the most common land uses worldwide (Raven 2002). In the 

United States, grazing occurs on approximately 40 percent of total land (Holechek et al. 1998) 

and approximately 70 percent of land in the west (Fleischner 1994). Livestock grazing directly 

affects vegetation by altering plant species composition and physical plant structure (Olff and 

Ritchie 1998; Briske et al. 2008; Lwiwski et al. 2015). Through the consumption of vegetation, 

livestock directly and indirectly affect the amount of vegetation available in an ecosystem. This 

has led some to suggest that livestock function as “ecosystem engineers” (Derner et al. 2009). 

Livestock grazing offers many benefits to a variety of stakeholders ranging from conservation 

practitioners to private land owners. In many landscapes with no formal protection, the continued 

use of landscapes for grazing represent a favorable alternative for native wildlife when compared 

with other land uses such as cropland. In addition, livestock grazing can provide both economic 

and cultural benefits to land owners. As a result, grazing easements and federal programs that 

support livestock grazing are quickly becoming a widely used conservation management tool. 

For example, in the western United States, grazing programs that are thought to be beneficial to 

wildlife are being implemented on over 2 million acres in 11 states (NABCI 2013).  

Despite these known advantages, the effects of different grazing systems, or how domestic 

livestock are moved throughout a landscape, on native wildlife remain relatively unexplored 

(Krausman et al. 2009). It is important to understand these effects in ecosystems that have been 

extensively fragmented. In these ecosystems, often the only remaining native vegetation persists 

on lands that are grazed by livestock. Sagebrush (Artemisia spp.) ecosystems have undergone 

extensive conversion to fragmentation from factors such as cropland conversion and urbanization 

(Knick et al. 2003). The remaining sagebrush landscapes are almost entirely grazed by livestock. 
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Knick et al. (2003) reported that “virtually all sagebrush lands are managed principally for 

livestock grazing.” Species that depend on this sagebrush ecosystems must therefore exist on 

lands with livestock grazing. In addition, large-scale grazing management programs, such as the 

Sage Grouse Initiative funded by the Natural Resource Conservation Service (NRCS) have 

implemented grazing management over a large portion of the western United States (NRCS 

2015).  

Unfortunately, there are few comparisons of the relative effects of different livestock grazing 

systems on wildlife. Many studies that examine the effect of livestock grazing on wildlife tend to 

compare livestock grazing in an area to an area without livestock grazing (e.g., Bock and Webb 

1984; Harrison et al. 2010; Nelson et al. 2011). Many of these investigations focus on the 

abundance of a single species (Krausman et al. 2009), providing only a partial measure of 

grazing impacts to wildlife (Briske et al. 2008). Using multiple species to assess grazing is 

important because different livestock grazing systems are likely to differentially affect a variety 

of species with diverse life history strategies (Bock et al. 1993; Krausman et al. 2009). For 

example, in a summary of grazing studies, Bock et al. (1993) noted that a group of ten songbird 

species showed a positive response to moderate levels of livestock grazing but a negative 

response to heavy grazing, dependent on the type of grassland vegetation. In addition, studies 

often do not consider multiple types of land ownership, which can have a significant effect on 

management practices (Sorice et al. 2014). This is important in arid lands, including sagebrush 

ecosystems, where ownership in the lower 48 states of the United States is 39% privately owned 

and 54% publically owned (NABCI 2013). Finally, many livestock grazing assessments do not 

measure attributes relevant to land managers. Studies often use vegetation metrics related to 

wildlife, whereas rangeland managers are typically interested in larger-scale metrics related to 
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livestock production (Henderson and Davis 2014). A multispecies, multiple land-ownership 

comparison of livestock grazing systems based on common livestock grazing practices in 

sagebrush ecosystems offers much needed information.  

Songbirds in sagebrush ecosystems are an excellent study system to explore the effects of 

different livestock grazing systems for many reasons. Songbirds are widespread and accessible 

for monitoring throughout sagebrush ecosystems, sensitive to habitat change, respond to grazing, 

and have declined concurrently with the increase of livestock production on rangelands 

(Bradford et al. 1998; Canterbury et al. 2000; Fuhlendorf and Engle 2001; Coppedge et al. 2006; 

Coppedge et al. 2008). Changes in songbird abundance are also ecologically important because 

they play an integral role in eoclogical communities: they interact with other species as 

predators, prey, pollinators and seed dispersers (Murphy and Romanuk 2012). In addition, many 

sagebrush ecosystem birds are designated as species of conservation concern by local, regional, 

or national organizations (Rich et al. 2004; Montana Natural Heritage Program 2014; IUCN 

2015). Overall, many sagebrush songbirds have been steadily declining (Knick and Rotenberry 

1995; Knick et al. 2003). Since 2010, bird populations in sagebrush ecosystems and other arid 

lands have been declining faster than in any other ecosystem in the lower 48 states of the United 

States (NABCI 2014). Finally, sagebrush ecosystem songbirds exhibit a varying degree of 

reliance on grassland vegetation, an important component of sagebrush ecosystems (Rich et al. 

2005). They range from: grassland obligates, species that use grassland for the majority of their 

life history needs; to facultative grassland species, which use grassland in addition to other 

vegetation to meet their life history needs; to sagebrush obligates, species that use sagebrush for 

the majority of their life history needs. 
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A large body of evidence suggests that grassland obligate songbirds respond to structural 

heterogeneity in grassland vegetation (Davis and Duncan 1999; Fisher and Davis 2010). 

Structural heterogeneity provides an advantage to grassland birds by offering a range of 

conditions for nest concealment and foraging (Henderson and Davis 2014). Different grazing 

systems affect the structural heterogeneity of grassland vegetation (Fuhlendorf and Engle 2001). 

However, it is unclear if differences in structural heterogeneity produced by different grazing 

systems are large enough to change songbird abundance. Given this uncertainty, the fact 

songbirds in sagebrush ecosystems depend almost exclusively on landscapes that are grazed by 

livestock, and the large-scale grazing programs in sagebrush ecosystems that implement 

conservation grazing, I address the question: how does grazing system influence songbird 

communities in sagebrush ecosystems? 

To answer this question, I use two grazing systems known to result in differences in 

vegetative structural heterogeneity. Traditional and rest-rotation are two widely implemented 

grazing systems in the United States (Briske et al. 2008; Holechek et al. 1999). Traditional 

grazing involves the continuous presence of livestock in the same pasture during a growing 

season (e.g., May through November) repeatedly over multiple years. Rest-rotation grazing, in 

constrast, involves alternating 15 to 18 month rotations of continuous grazing and rest within a 

pasture. Traditional grazing results in higher vegetation structural heterogenity than rest-rotation 

grazing on both local- and broad-scales (Fuhlendorf and Engle 2001). Neither grazing system is 

expected to have an effect on the density of sagebrush. Veblen et al. (2015) showed that the 

density of sagebrush and size of sagebrush shrubs was the same in areas livestock were present 

and control areas where they were excluded.  
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I use eight songbird species that represent varying degrees of grassland use in sagebrush 

ecosystems ranging from grassland to sagebrush obligates (Paige and Ritter 1999) (Table 2-1): 

Brewer’s sparrow (Spizella breweri), brown-headed cowbird (Molothrus ater), chestnut-collared 

longspur (Calcarius ornatus), horned lark (Eremophila alpestris), lark bunting (Calamospiza 

melanocorys), McCown's longspur (Rhynchophanes mccownii), vesper sparrow (Pooecetes 

gramineus), and western meadowlark (Sturnella neglecta). I test the hypothesis that songbirds 

respond to grazing (i.e., the structural heterogeneity caused by grazing) based on their reliance 

on grassland vegetation. I predict that grassland obligate species are more abundant in the 

grazing system that produced more structural heterogeneity, traditional grazing. In addition, I 

predict that the strength of the effect of traditional grazing on the difference in abundance 

depends on how much species depends on grassland. Thus grassland obligates will show a 

stronger response than facultative species or generalists. Finally, I predict that sagebrush obligate 

species show no difference in abundance between the two grazing systems because they are not 

closely tied to changes in grassland structural heterogeneity and livestock grazing is not known 

to affect sagebrush shrubs (Veblen et al. 2015).  

Songbird abundance may be affected by a variety of other factors operating independent of 

variability in grassland vegetation caused by livestock grazing systems. In arid rangeland 

environments, researchers have found that abiotic factors play a strong role in governing the 

abundance and distribution of species (Wiens and Rotenberry 1980; Vander Haegen et al. 2000). 

To account for abiotic factors, I consider an index of biomass potential produced by NRCS. The 

index relates abiotic factors, including soil and climate, to the ability of the land to produce 

biomass. Preliminary analysis determined that biomass potential was different between 

traditional and rest-rotation grazing systems (Appendix 2); thus, the influence of biomass 
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potential was included as a covariate to account for additional sources of heterogeneity within 

grazing systems. To account for additional spatial and temporal variation in abundance, I include 

parameters for sampling plot and year. Many species respond to management actions differently 

because of different life history requirements (Lindenmayer et al. 2002). Therefore, I assume the 

effects of grazing and these additional covariates on abundance each vary by species, as 

described below. I use a modified multispecies abundance model, the multispecies dependent-

double observer abundance model (MDAM), to track changes in abundance of multiple 

sagebrush songbird species. The MDAM uses removal methodology in a Bayesian framework to 

estimate detection and adjusted abundance estimates of multiple species (see Chapter 1). With 

this study, I provide a critical comparison for land managers on how a group of wildlife species 

respond to two widely used grazing systems. 

METHODS 

Field Methods 

Study Area 

I conducted this study across 89,000 ha of sagebrush grassland habitat in Golden Valley and 

Musselshell Counties near Roundup, Montana. I accessed areas in private landownership and 

public land managed by US Department of Interior Bureau of Land Management (BLM). The 

area is arid, with average annual precipitation of 0.34 m and the highest amount of precipitation 

occurring in May. Vegetation is dominated by Wyoming big sagebrush (Artemsia tridentata spp. 

wyomingensis) intermixed with western wheatgrass (Pascopyrum smithii), needle-and-thread 

grass (Stipa comata), blue grama (Bouteloua gracilis) and prairie Junegrass (Koeleria 
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macrantha). Additional vegetation includes smaller areas dominated by Ponderosa pine (Pinus 

ponderosa) forests and riparian habitat.   

Field Sampling 

I randomly selected 40 sampling plots that were 500 m x 500m (25 ha) in each of the two 

grazing systems, for a total of 80 sample plots. A size of 25 ha was chosen following Tipton et 

al. (2008 and 2009). My goal was to obtain a sample of plots that were representative of 

grassland and sagebrush songbird habitat in the study area. Therefore, I did not include plots 

where forest, open water, or other non-vegetative cover made up 30% or more of the ground 

cover within the plot. To the extent possible, I excluded plots that included county roads. If a plot 

was excluded, I selected another random plot to sample so that I maintained 40 sampling plots in 

each grazing system. Traditional grazing plots were located on public lands managed by US 

Department of Interior Bureau of Land Management (BLM). Rest-rotation plots were located on 

private lands that are enrolled in a conservation program that employs rest-rotation grazing.  

Bird survey data were collected during the peak songbird breeding season in Montana from 

May through July in 2013 and 2014. Sampling plots were surveyed three times (approximately 

once a month in May, June, and July) to capture the beginning, middle, and end of the breeding 

season. I used dependent double-observer transect (DDOT) survey method to obtain abundance 

estimates of eight bird species.  

The DDOT survey method involved two observers who walked along a transect: a primary 

observer who walked in front, and a secondary observer, who walked approximately 3 to 5 m 

behind the primary observer. The observers started the survey on the southeast transect corner of 

each plot and walked along the transect surveying 125 m on either side of the transect (Figure 2-

1). I chose a distance of 125 m because ≥95% of songbird detections occur within 125 m of an 
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observer (Ralph et al. 1995). Following Nichols et al. (2000), the primary observer 

communicated each individual bird observed, including species and approximate location, to the 

secondary observer who recorded the information. The secondary observer also recorded 

detections that the primary observer missed. If an auditory detection occurred, an observer was 

required to get visual confirmation of the bird. The observers switched roles after each survey. 

Surveys were conducted between approximately 0600 and 1100 hours. Surveys were not 

conducted during inclement weather or when winds were greater than 15 mph. 

Statistical Analysis 

Modeling Abundance  

I modeled true abundance of species i at plot j in year y (𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖) as function of a Poisson 

random variable with mean species abundance per plot in each year (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖) (Equation 1). I used a 

log link function to relate grazing and additional explanatory covariates to abundance using a 

linear predictor of mean species abundance (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖) (Equation 2). I modeled the mean species 

abundance per plot in each year as a function of the linear combination of a species-specific 

intercept (𝛽𝛽0𝑖𝑖), plus a fixed-effect of grazing system that varied by species, (𝛽𝛽1𝑖𝑖), a fixed effect 

for biomass potential that varied by species (𝛽𝛽2𝑖𝑖), a fixed effect for year that varied by species 

(𝛽𝛽3𝑖𝑖), plus a random effect for plot (𝛼𝛼𝑗𝑗) to account for variation not otherwise explained 

(Equation 2).  

Equation 1: Biological process 

 

  

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖) 
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Equation 2: Mean species abundance  

  

log�𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖 ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2𝑖𝑖 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽3𝑖𝑖 ∗ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝛼𝛼𝑗𝑗 

I used vague normal distributions N (0, 1,000) for the priors of the coefficients of the linear 

predictor of mean species abundance (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖). For the random plot effect (𝛼𝛼𝑗𝑗), I used a uniform 

distribution ranging from 0 to 100 for the prior on the dispersion parameter. 

Modeling Observations  

The DDOT survey method produces observations with three possible outcomes: 1) the 

primary observer detects an individual; 2) the secondary observer detects an individual the 

primary observer misses; and 3) both the primary and secondary observer do not detect an 

individual. Each of these outcomes has a different probability of occurring because they are 

based on a combination of events resulting from two observers. Outcome 1 is based only on the 

primary observer’s ability to detect an individual (𝑝𝑝1). Outcome 2 is a product of the probability 

that the primary observer did not detect and individual, (1 − 𝑝𝑝1), and the secondary observer’s 

ability to detect an individual (𝑝𝑝2). Outcome 3 is a product of neither observer detecting an 

individual (1 − 𝑝𝑝1) ∗ (1 − 𝑝𝑝2). Because this process has multiple outcomes with multiple 

probabilities, I considered it a multinomial process. I modeled the observed abundance, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, of 

species i at plot j in year y at survey replicate k as a function of a multinomial random variable 

that is a function of latent abundance, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (Equation 1), and three multinomial cell probabilities 

𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖 that represent the DDOT survey outcomes described above (Equation 3).  

Equation 3: Observation process 

  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖,  𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖�    
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I accounted for variation in the observation process by including both individual observer 

effects and species effects. I used vague normal distributions N (0, 10,000) for the prior 

distributions of detectability for each observer and species that informed the multinomial cell 

probabilities. 

RESULTS 

Two-person field teams completed a total of 478 DDOT surveys in 2013 and 2014. Each 

year, teams conducted 240 surveys per grazing system, with the exception of rest-rotation 

grazing in 2013, when there were 238 surveys completed due to access constraints on a single 

plot. These surveys resulted in 11,267 observations in 2013 and 12,175 observations in 2014 of 

the eight prairie avian species (Table 2-2). In both 2013 and 2014, total observations were higher 

in rest-rotation (6,080 and 6,878, respectively) than traditional grazing (5,187 and 5,297, 

respectively), although this pattern differed by species. In 2013 and 2014, more Brewer’s 

sparrows, brown-headed cowbirds, lark buntings, vesper sparrows, and western meadowlarks 

were observed in traditional grazing than in rest-rotation grazing. In contrast, in 2013 and 2014 

more horned larks and McCown’s longspurs were observed in rest-rotation than traditional 

grazing. There was no clear pattern for chestnut-collared longspur: more were observed in rest-

rotation grazing in 2013, but this was reversed in 2014. 

The effect of year was neutral (i.e., the CRI overlapped with 0 and the most support in 

posterior distribution was for values at or near 0 on the link scale) for most species considered 

(Table 2-3; Figure 2-2). Therefore, the results presented in this section are based on the 2013 

sampling year. Compared to traditional grazing, the effect (presented on a log scale) of rest-

rotation grazing on abundance was neutral for half of the species examined (Table 2-3): Brewer’s 

sparrow, chestnut-collared longspur, horned lark, and vesper sparrow. Rest-rotation grazing had 
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a negative effect on the abundance of three species: brown-headed cowbird, lark bunting, and 

western meadowlark. The effect of rest-rotation grazing was positive only for McCown’s 

longspur.  

The effect (presented on a log scale) of biomass potential on abundance was positive for six 

of the eight species examined (Table 2-3): brown-headed cowbird, chestnut-collared longspur, 

horned lark, lark bunting, McCown’s longspur, and western meadowlark. The effect was 

negative for Brewer’s sparrow. For vesper sparrow the effect was neutral (Figure 2-3). 

Songbird abundance differed between the two grazing systems (Figure 2-4) when accounting 

for the effect of biomass potential and year. All abundance estimates presented in this section are 

the average predicted number of individuals of a species per 25 ha sampling plot. I considered 

abundance to be different between the two grazing systems if the CRIs for the predicted 

abundance did not overlap (i.e., it was 100% likely that the abundances were different) (Figure 2-

5). Abundance was different between the two grazing systems for four of eight species: brown-

headed cowbird, lark bunting, McCown’s longspur and western meadowlark (Table 2-3; Figure 

2-4). Three species were on average more abundant per 25 ha in traditional grazing than rest-

rotation grazing: brown-headed cowbird, lark bunting, and western meadowlark. McCown’s 

longspur, on the other hand, was more abundant per 25 ha in rest-rotation grazing than traditional 

grazing systems. The remaining four species showed no difference (i.e., CRIs overlapped) in 

abundance between grazing systems: Brewer’s sparrow, chestnut-collared longspur, horned lark, 

and vesper sparrow.  

The relative role of grazing system and biomass potential on abundance varied by species 

(Figure 2-6). Overall, grazing system appeared to have a larger effect on abundance than biomass 

potential (i.e., the difference between the predicted abundance for each grazing system was 
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larger than the difference in abundance predicted over all of the biomass potential values present) 

for brown-headed cowbird (at low values of biomass potential), lark bunting, McCown’s 

longspur, and western meadowlark. Biomass potential appeared to have a larger effect on 

abundance than grazing system for Brewer’s sparrow, chestnut-collared longspur, and horned 

lark. For vesper sparrows, both grazing system and biomass potential appeared to have a minimal 

effect on abundance.  

DISCUSSION 

My findings, in general, support my predictions. Overall faculatative and grassland obligate 

species were either more abundant on traditional grazing systems or equally abundant on the two 

grazing systems. As expected, the sagebrush obligate, Brewer’s sparrow, showed no difference 

in abundance between the two grazing systems. One species did not support my predicitons.  

McCown’s longspur, a grassland obligate, was more abundant on rest-rotation that is suggest to 

have less grassland structural heterogenity than on traditional grazing. Biomass potential had a 

positive effect on six out of the eight species and the relative role compared to grazing varied by 

species. This is consistent with other studies in sagebrush and grassland ecosystems, which 

suggest abiotic factors play an important role in determining abundance (Wiens and Rotenberry 

1980), interact with grazing, and vary by individual species (Lipsey 2015). It is important to note 

that survey teams observed all species in both grazing treatments, although there were 

differences in the number observed between the two grazing systems. 

Some grassland obligate species, lark bunting and western meadowlark, were more abundant 

on traditional grazing systems, where there is more grassland vegetation structural heterogeneity. 

This is consistent with other work on grassland birds (Fisher and Davis 2010). Both of these 

species nest and forage on the ground; a wide variety of grassland vegetation structure supports 
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their ability to both conceal nests and efficiently forage. The facultative grassland species, the 

brown-headed cowbird, responded in a similar manner and was more abundant on traditional 

grazing systems. This species parasitizes nests of other songbirds. Although the brown-headed 

cowbird has considerable flexibility in its nesting choices (Forsman and Martin 2009), the 

species evolved with grassland systems in North America and is closely tied to the nesting habits 

of grassland songbirds. Thus, my findings were consistent with what I predicted that this species 

would be most abundant in areas where grassland songbirds are likely to be more abundant (i.e., 

traditional grazing systems).  

The two grassland obligate species, chestnut-collared longspur and horned lark, and a 

generalist, vesper sparrow, showed no clear difference in abundance between rest-rotation and 

traditional grazing. This may represent the incredible variability grassland songbirds exhibit in 

their vegetation preferences that vary by where the species is within its broader range and what 

vegetation is present in the surrounding areas (Vickery et al. 1999). Therefore, it is probable that 

there is no “one size fits all” amount of structural heterogeneity that is appropriate for all 

grassland birds. This variation may also explain why the strength of the influences of traditional 

grazing did not follow my prediction that grassland obligate species would respond more 

strongly than facultative grassland species. 

The response of McCown’s longspur is counter to my predictions. McCown’s longspur 

showed a clear difference in abundance between the two grazing systems: on average it was 

more than twice as abundant per 25 ha in rest-rotation grazing than traditional grazing. Based on 

observations, it would seem that McCown’s longspur are not as widespread on traditional 

grazing systems. Over two years of the study, McCown’s longspurs were only seen on roughly 

half of the plots in traditional grazing systems, whereas they were seen on roughly 75% of the 
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plots in rest-rotation grazing systems. McCown’s longspurs are known to breed in loose colonies 

(Sedgwick 2004), suggesting that there is a social, or conspecific attraction, component to their 

location on a landscape. I consistently observed large colonies of nesting McCown’s longspurs in 

the study area with few other songbird species present. In addition, McCown’s longspurs prefer 

very short grassland vegetation (Knopf 1996; Sedgwick 2004). Although they appear to have the 

same requirements as other grassland songbirds in the study (e.g., require grassland vegetation 

for nesting and foraging, nest on the ground), the need for short grass may override the need for 

structural heterogeneity that other grassland birds require. In addition, the social aspect of their 

nesting may strengthen the observed relationship between the abundance and vegetation 

association of the species (i.e., more individuals will nest in areas where individuals are already 

present).  

The effect of biomass potential was positive for six of the eight species examined: brown-

headed cowbird, chestnut-collared longspur, horned lark, lark bunting, McCown’s longspur, and 

western meadowlark. This is consistent with previous findings that species in sagebrush 

environments may be heavily influenced by abiotic conditions (Wiens and Rotenberry 1987). 

Only one species, Brewer’s sparrow, showed a negative response to biomass potential. This is 

likely because Brewer’s sparrow depend completely on sagebrush, a shrub known for growing in 

poor, unproductive soil. For vesper sparrow the effect of range quality was essentially neutral, 

which is consistent with the description of this species as a generalist (Jones and Cornley 2002).  

There are some important limitations of this study. First, this study was conducted over two 

years, limiting its inference about the long-term effects of these grazing systems. The long term 

effects of vegetation changes and songbird associations are likely complex in sagebrush 

ecosystems. For example, Rotenberry and Wiens (2009) found that vegetation associations of 
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sagebrush songbirds from a six year study were not predictive of habitat associations in the same 

study area 14 years later. Secondly, although I attempted to capture a range of avian responses 

with the eight species I selected, eight species may not capture all of the variety of breeding 

songbirds within the sagebrush grassland bird community. Given that grazing primarily effects 

grassland and not sagebrush vegetation, the choice of species was a good representation of the 

community of species likely to be affected by grazing. Finally, pasture size is an important 

component of grazing management (McGranahan et al. 2013). I did not consider this as part of 

my study because of the variability that was present in both grazing systems. Given this 

variability, I did not expect that on average pasture size would be different between the two 

grazing systems.  

This study provided an important first step in comparing rest-rotation and traditional grazing 

in sagebrush ecosystems. I used a group of eight species that were largely representative of the 

grassland obligate songbirds in this community. Although I do not expect these grazing systems 

to have much of an effect on sagebrush species, future work should continue to explore 

sagebrush obligates. The responses of these species suggest that their vegetation preferences are 

closely tied to breeding activity, which I did not investigate. Future work that measures total 

reproductive output (a product of nest density and nest success) in these grazing systems may 

illuminate underlying processes driving these changes in abundance. I used a novel modeling and 

survey approach, the MDAM, which can incorporate this type of extension. Grazing is often 

assumed to have universal consequences for an ecosystem. However, this study demonstrates 

that any grazing system is unlikely to have similar consequences for all species. This represents 

an important consideration for managers thinking about how a broad, widely applied activity like 

grazing can support numerous species. 
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FIGURES AND TABLES 

 
Figure 2-1. Dependent double-observer transect method. The primary (open circle) and 

secondary observer (dashed circle) walk single-file along the transect (dotted line) within a 500 

m x 500 m sampling plot. Observers survey up to 125 m on either side of the transect. All 

surveys start at the lower right corner of the transect. Red arrows indicate direction of travel. 
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Figure 2-2. The posterior distributions of the estimated effect of rest-rotation grazing (log scale 

on the x-axis) compared to traditional grazing on abundance of species per 25 ha eight sagebrush 

songbird species. The percentages in each distribution represent the percent chance that the effect 

of rest-rotation grazing is positive. Estimates are derived from data collected near Roundup, 

Montana, in 2013 using the multispecies dependent double-observer abundance model.  
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Figure 2-3. The posterior distributions of the estimated effect of biomass potential (log scale on 

the x-axis) on abundance of species per 25 ha for eight sagebrush songbird species. The 

percentages in each distribution represent the percent chance that the effect of biomass potential 

is positive. Predictions are derived from data collected near Roundup, Montana, in 2013 using 

the multispecies dependent double-observer abundance model. 
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Figure 2-4. The estimated abundance of species per 25 ha for eight sagebrush songbird species 

in rest-rotation and traditional grazing systems. Estimates are derived from data collected near 

Roundup, Montana, in 2013 using the multispecies dependent double-observer abundance 

model. 
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Figure 2-5. The posterior distributions of the estimated abundance per 25 ha for eight sagebrush 

songbird species in rest-rotation and traditional grazing systems. Predictions are derived from 

data collected near Roundup, Montana, in 2013 using the multispecies dependent double-

observer abundance model.  
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Figure 2-6. The log of average estimated abundance per 25 ha (y-axis) and the values of biomass potential (x-axis). Estimates are 

derived from the multispecies dependent double-observer abundance model from data collected near Roundup, Montana in 2013. 

Regression lines show the trend within each grazing system. The distance between the lines reflects the grazing effect for each species, 

whereas the slopes of the lines reflect the effect of biomass potential on each species. 
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Table 2-1. Eight sagebrush ecosystem songbird species, their vegetation association, uses for 

grassland vegetation, and predicted response of rest-rotation compared to traditional grazing 

systems on public and private land near Roundup, Montana, in 2013 and 2014.  

Common name Scientific name Vegetation 
association 

Uses for 
grassland 
vegetation 

Predicted 
response to 

grazing 

Brewer’s sparrow Spizella breweri Sagebrush 
obligate2 

Occasional 
foraging Neutral 

Brown-headed cowbird Molothrus ater Facultative 
grassland1 

Occasional 
nesting, foraging 

Neutral to 
negative 

Chestnut-collared longspur Calcarius 
ornatus 

Grassland 
obligate1 Nesting, foraging Negative 

Horned lark Eremophila 
alpestris 

Grassland 
obligate1 Nesting, foraging Negative 

Lark bunting Calamospiza 
melanocorys 

Grassland 
obligate1 Nesting, foraging Negative 

McCown’s longspur Rhynchophanes 
mccownii 

Grassland 
obligate1 Nesting, foraging Negative 

Vesper sparrow Pooecetes 
gramineus Generalist3 Occasional 

nesting*, foraging Neutral 

Western meadowlark Sturnella 
neglecta 

Grassland 
obligate1 Nesting, foraging Negative 

*Will nest under a shrub if present3 
1 Vickery et al. 1999.  
2 Paige and Ritter 1999. 
3 Jones and Cornley 2002. 
 
 
 
  



68 
 

Table 2-2. Summary of observations of eight birds surveyed using the dependent double-

observer transect method in 2013 and 2014 in rest-rotation and traditional grazing systems near 

Roundup, MT.  

 
 

Common name 

2013 2014 
Public  Private Public Land Private 

Plots  Observed Plots  Observed Plots Observed Plots  Observed 

Brewer’s sparrow 35 979 27 804 33 1,101 24 927 

Brown-headed 
cowbird 30 200 17 90 26 203 20 120 

Chestnut-collared 
longspur 16 168 19 272 5 209 16 197 

Horned lark 33 597 37 1,015 31 870 37 1,075 

Lark bunting 17 345 17 113 19 352 20 234 

McCown’s 
longspur 18 1,037 31 2,450 15 726 29 2,824 

Vesper sparrow 39 1,066 39 936 38 1,057 37 1,030 

Western 
meadowlark 40 795 40 400 40 779 39 471 

Totals  5,187  6,080  5,297  6,878 
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Table 2-3. Effects of covariates on average predicted abundance (N�) and ninety-five percent 

credible intervals per 25 ha for eight avian species. The effects are on a log scale. Predictions are 

derived from the multispecies dependent double-observer abundance model using data collected 

in rest-rotation and traditional grazing near Roundup, Montana in 2013 and 2014.  

Species Grazing1 Biomass potential2 Year3 

Brewer’s sparrow 0.122 (-0.109–0.355) -0.192 (-0.308–-0.075) -0.200 (-0.310–-0.091) 

Brown-headed cowbird -0.713 (-1.000–-0.429) 0.371 (0.224–0.519) 0.211 (-0.052–0.489) 

Chestnut-collared 
longspur 0.121 (-0.146–0.39) 1.219 (1.064–1.377) -0.446 (-0.656–-0.238) 

Horned lark 0.177 (-0.052–0.408) 0.344 (0.226–0.462) 0.244 (0.149–0.339) 

Lark bunting -0.961 (-1.215–-0.707) 0.441 (0.314–0.568) -1.660 (-2.030–-1.316) 

McCown’s longspur 0.914 (0.685–1.143) 0.704 (0.587–0.821) 0.082 (0.011–0.154) 

Vesper sparrow 0.072 (-0.159–0.303) -0.002 (-0.117–0.113) 0.064 (-0.042–0.171) 

Western meadowlark -0.582 (-0.820–-0.346) 0.181 (0.061–0.302) 0.402 (0.277–0.529) 

1 = The effect of rest-roation relative to traditional grazing. 
2 = The effect of a one unit increase in biomass potential relative to avaerage biomass potential. 
3 = The effect of 2014 relative to 2013. 
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Table 2-4. The average predicted abundance (N�) and ninety-five percent credible intervals per 25 

ha for eight avian species in rest-rotation and traditional grazing systems. Predictions are derived 

from the multispecies dependent double-observer abundance model from data collected near 

Roundup, Montana in 2013 and 2014.  

 
 

Species 

2013 2014 
Rest-rotation Traditional Rest-rotation Traditional 

𝑁𝑁� 95% CRI 𝑁𝑁� 95% CRI 𝑁𝑁� 95% CRI 𝑁𝑁� 95% CRI 

Brewer’s 
sparrow 16.05 13.47–

18.98 14.21 11.95–
16.77 13.20 10.44–

16.45 11.68 9.29–
14.49 

Brown-headed 
cowbird 2.66 1.97–

3.58 5.41 4.13–
7.07 3.36 2.01–

5.50 6.82 4.19–
10.89 

Chestnut-
collared 
longspur 

2.26 1.77–
2.84 2.00 1.55–

2.55 1.46 0.99–
2.10 1.29 0.87–

1.85 

Horned lark 14.58 12.28–
17.16 12.21 10.29–

14.38 18.66 14.95–
23.00 15.62 12.54–

19.24 

Lark bunting 8.28 5.73–
11.70 21.62 15.57–

29.54 1.61 0.88–
2.74 4.21 2.36–

6.98 

McCown’s 
longspur 33.18 28.15–

38.78 13.30 11.19–
15.69 36.06 29.73–

43.33 14.45 11.81–
17.54 

Vesper sparrow 18.91 15.85–
22.38 17.60 14.79–

20.80 20.21 16.01–
25.23 18.81 14.92–

23.47 

Western 
meadowlark 8.95 7.37–

10.77 16.02 13.29–
19.16 13.41 10.20–

17.39 24.01 18.32–
31.00 
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APPENDIX 1: R CODE 
 
#Multispecies dependent double-observer model  
#Author: Jessie Golding 
#7/31/2015 
 
# Load required R packages 
 

require(plyr) 
require(dplyr) 
require(car) 
require(R2jags) 
require(raster) 
require(rgdal) 
require(stringr) 
require(ggplot2) 
require(wesanderson) 
require(gridExtra) 
require(reshape2) 
require(RColorBrewer) 
require(RODBC) 
require(mcmcplots) 

 
###Simulated data### 
 
#Function to simulate data (sim.fun) and run simulation (sim.fun.rep) 
#Create function to simulate dependent double-observer data for multiple species  
#and multiple sites and multiple repeated surveys for a single season 
 
sim.fun <- function(n.sites){ 
   
  ##  Setup the logistics of sampling 
   
  #  Number of sites 
  n.sites <<- n.sites 
  #  Number of visits to each site 
  n.reps <- 3 
  #  Number of observsers 
  n.observers <- 2 
  #  Number of sp 
  n.sp <- 4 
  #  Number of observations 
  n.obs <- n.sites * n.reps *n.sp 
   
   
  #  Indices for long format 
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  #prim = primary observer 
  #sec = secondary observer 
   
  prim <- sample(1:2, n.sites*n.reps*n.sp, replace = T) 
  sec <- ifelse(prim == 1, 2, 1) 
   
  #  A quick check that it worked 
  all((prim + sec) == 3) 
   
  #Generate site info 
  site <- rep(1:n.sites, each = n.reps*n.sp) 
   
  #Generate survey replicate information 
  reps <- rep(rep(1:n.reps, n.sites), n.sp) 
   
  #Generate species information 
  sp <-rep(1:n.sp, each = n.sites*n.reps) 
   
   
  #  Detection probability of primary observer  
  P <- vector("numeric") 
 
  P[1] <- 0.3 
  #  Detection probability of secondary observer 
  P[2] <- 0.5 
   
  #  Sum of p's should be less than 1, where the remainder represents the 
  #  proportion of the sampled population not observed 
  stopifnot((P[1] + P[2]) < 1) 
  cat("\nProbability of not capturing birds", 1 - (P[1] + (P[2] * (1 - P[1]))), 
      "\n\n") 
   
  ##  Biological Parameters 
   
  #  Mean abundance across sites, one for each species  
  #  The numbers are meant to be very different so we can see how the model handles them 
  lambda <- c(20, 150, 300, 1000) 
   
  #  Proportion of the population captured at each session 
  p.cap <- P[1] + (P[2] * (1 - P[1])) 
  
  #  Proportion of population not captured at each session 
  p.nocap <- 1 - p.cap 
   
  ##  Simulation  
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  #  Initialize matrices to hold values of abundance corrected for availability 
  N <- array(NA, dim = c(n.sites, n.reps, n.sp)) 
   
  # Initialize matrices to hold values of observations and probability of detection 
  #Columns are outcomes of the multinomial 
  y <- cp <- matrix(NA, nrow = n.obs, ncol = n.observers) 
 
   
  #  Initialize matrix to hold values of true abundance 
  M <- matrix(NA, n.sites, n.sp) 
  for(i in 1:n.sites){ 
    M[i,] <- rpois(n.sp, lambda) 
  } 
   
  #  Abundance corrected for availability during each survey rep 
  for(i in 1:n.sites){ 
    for(j in 1:n.reps){ 
      for(k in 1:n.sp){ 
        N[i,j,k] <- rbinom(1, M[i,k], p.cap) 
      } 
    } 
  } 
   
  # Number observed 
  for(i in 1:n.obs){ 
    cp[i,] <- c(P[prim[i]], P[sec[i]] * (1 - P[prim[i]])) 
    y[i,] <- c(rmultinom(1, N[site[i], reps[i], sp[i]], cp[i,])) 
  } 
   
  #  Put the data together in long format 
  input <- data.frame(cbind(y[,1:2], y[,1]+y[,2], site, reps, sp, prim, sec)) 
  colnames(input)[1:3] <- c("y1", "y2", "ncap") 
   
  
############################################################################## 
  #  JAGS model to estimate parameters 
  sink("model_multinomial_multisp_sim.txt") 
  cat(" 
      model{ 
      #  Priors 
      #  Linear predictor on abundance, setup for species variation only, 
      #  abundance assumed the same at every site 
      for(i in 1:n.sp){ 
      log.n[i] ~ dnorm(0, 0.001) 
      mu.lambda[i] <- exp(log.n[i]) 
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      } 
      #  Population size of each species at each site 
      #  (JAGS -> dnegbin(p,r)) 
      for(i in 1:n.sites){ 
      for(k in 1:n.sp){ 
      N[i,k] ~ dpois(mu.lambda[k]) 
      } 
      } 
      #  Individual observer detection probability, no variation 
      for(i in 1:n.observers){ 
      p[i] ~ dbeta(1, 1) 
      } 
       
      #  Likelihood 
      for(i in 1:n.obs){ 
      #  Indices always follow site, reps, species order 
      #  Capture probabilities 
      #  Seen by observer #1  
      cp[i,1] <- p[prim[i]] 
      #  Seen by observer #2 and not seen by observer #1 
      cp[i,2] <- p[sec[i]] * (1 - p[prim[i]]) 
      #  Seen by somebody 
      pcap[i] <- sum(cp[i,]) 
      #  Not seen by either observer 
      pnocap[i] <- 1 - pcap[i] 
      #  Adust the prob of capture to the prop available 
      #  2 is for number of outcomes (probablities for obs1 and obs2) 
      for(j in 1:2){ 
      muc[i,j] <- cp[i,j]/pcap[i] 
      } 
      #  Realizations 
      #  Number captured (ncap) and population size (N) 
      ncap[i] ~ dbin(pcap[i], round(N[site[i],sp[i]])) 
      y[i,] ~ dmulti(cp[i,1:2], ncap[i]) 
       
      } 
      } 
      ", fill = T) 
  sink() 
  
############################################################################## 
 
  #Format JAGS data 
  data <- list("y" = input[,1:2], 
               "prim" = input$prim, 
               "sec" = input$sec, 
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               "n.obs" = nrow(input), 
               "n.observers" = n.observers, 
               "n.sites" = length(unique(input$site)), 
               "site" = input$site, 
               "n.sp"=length(unique(input$sp)), 
               "ncap" = input$ncap, 
               "sp"=input$sp) 
   
  #R2jags requires the data is in the global environment. Because this is in a  
  #function need to write it to the global environment each time. 
  list2env(data, envir=globalenv()) 
   
  require(R2jags) 
  inits <- function(){list( 
    log.n = log(lambda), 
    p = c(0.3, 0.5), 
    N = M*2 )} 
  parms <- c("p", "N", "mu.lambda", "pcap") 
  out <- jags.parallel(data=names(data), inits, parms, "model_multinomial_multisp_sim.txt", 3, 
50000, 1000, 1) 
   
  summ <- list("P" = round(cbind(P, out$BUGS$mean$p, 100 * abs(P - out$BUGS$mean$p)/P), 
2), 
               "N" = round(cbind(M, out$BUGS$mean$N, 100 * abs(M - out$BUGS$mean$N)/M), 
2)) 
   
  coverage<-list("Pcov" = ifelse(P>(quantile(out$BUGS$sims.list$p,.025)) & 
P<(quantile(out$BUGS$sims.list$p,.975)), 1, 0), 
                 "Ncov" = ifelse(M>(quantile(out$BUGS$sims.list$N,.025)) & 
M<(quantile(out$BUGS$sims.list$N,.975)), 1, 0)) 
   
  data<-list(summ,coverage) 
   
} 
 
 
#Create function to specify the number of times and for how many sites the sim.fun  
#should run  
 
sim.fun.rep<-function(n.times, n.sites){ 
  replicate(n.times, sim.fun(n.sites), simplify = F) 
} 
 
 
### Function to format and plot simulated data for MDAM to assess mean absolute percent error 
and coverage ### 
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sim.form<-function(sim.out,n.times,n.sp.n.sites){  
#Absolute mean percent error of detection (p) 
p.err <- unlist(lapply(sim.out, function(x){ 
  x[[1]][[1]][,3] 
})) 
 
#Absolute mean percent error of abundance (n) 
n.err <- unlist(lapply(sim.out, function(x){ 
  x[[1]][[2]][,9:12] 
}))  
 
#Coverage (does 95% CRI include true value) of detection (p) 
p.cov<-numeric(length = 0) 
for(i in 1:n.times){ 
  tmp<-as.numeric(unlist(sim.out[[i]][[2]][1])) 
  p.cov[i]<-sum(tmp) 
} 
 
#Coverage (does 95% CRI include true value) of abundance (n) 
n.cov <- unlist(lapply(sim.out, function(x){ 
  x[[2]][[2]][,1:4] 
}))  
 
#Create data frames of absolute mean percent errors  
p.est<-as.data.frame(p.err) 
n.est<-as.data.frame(n.err) 
 
#Calculate coverage values. The number that the sums are divided by are the total 
# number of samples from the sim.fun function 
p.coverage<-(sum(p.cov)/(n.times*2))*100 
n.coverage<-(sum(n.cov)/(n.sites*n.sp*n.times))*100 
 
#Info for table of percent errors - n 
n.est$cat<-ifelse(n.est$n.err<21,1, 
                  ifelse(n.est$n.err>21 & n.est$n.err<40,2, 
                  ifelse(n.est$n.err>41 & n.est$n.err<60,3, 
                  ifelse(n.est$n.err>61 & n.est$n.err<80,4,  
                  ifelse(n.est$n.err>81 & n.est$n.err<100,5, 
                  6))))) 
 
n.est<-as.data.frame(ddply(n.est,.(cat), nrow)) 
n.est$percent <-round((n.est$V1/(n.sites*n.sp*n.times))*100,1) 
 
 
p.est$cat<-ifelse(p.est$p.err<=1,1, 
                  ifelse(p.est$p.err>1 & p.est$p.err<=2,2, 
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                  ifelse(p.est$p.err>2 & p.est$p.err<=3,3, 
                  ifelse(p.est$p.err>3 & p.est$p.err<=4,4,  
                  ifelse(p.est$p.err>4 & p.est$p.err<=5,5, 
                  ifelse(p.est$p.err>5,6, 
                  6)))))) 
 
p.est<-as.data.frame(ddply(p.est,.(cat), nrow)) 
p.est$percent <-(p.est$V1/(n.times*2))*100 
 
 
} 
 
### MDAM Extension Chapter 1 ### 
 
#Code for writing and running MDAM extension described in Chapter 1 
 
############################################################################## 
  #  JAGS model to estimate parameters 
sink("model_multinomial_multisp_MDAMext.txt") 
cat(" 
    model{ 
    #  Priors 
    #rqcoef ~ dunif(-10,10) 
     
    #  Random effect on site to account for overdispersion 
    sd.site ~ dunif(0, 100) 
    tau.site <- 1/(sd.site^2) 
    for(i in 1:n.sites){ 
    site.eff[i] ~ dnorm(0, tau.site) 
    } 
     
    # Fixed effect of year  
    for(i in 1:n.sp){   
    year.eff[i] ~ dnorm(0, 0.01) 
    } 
     
    # Fixed effect of grazing effect and mean abundance prior (i.e. intercept) 
    for(i in 1:n.sp){ 
    graze.eff[i] ~ dnorm(0, 0.01) 
    loglam[i] ~ dnorm(0, 0.01)  
    lambda[i] <- exp(loglam[i]) 
    } 
     
    #  Site abundance linear predictor 
    for(i in 1:n.sites){ 
    for(j in 1:n.sp){ 
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    for (k in 1:2){  
    mu.lambda[i,j,k] <- exp(loglam[j] + graze.eff[j] * grazed[i] + site.eff[i] + year.eff[j]*(k-1)) 
     
    #  Site abundance 
    N[i,j,k] ~ dpois(mu.lambda[i,j,k]) 
    } 
    } 
    } 
     
    #  Individual observer detection probability 
    for(i in 1:n.observers){ 
    for (j in 1:n.sp){  
    p[i,j] ~ dnorm(0, 0.001) 
    } 
    } 
     
    #  Primary likelihood 
    for(i in 1:n.obs){ 
    #  Capture probabilities 
    #  Seen by observer #1 
    cp[i,1] <- p[prim[i],sp[i]] 
    #  Seen by observer #2 and not seen by observer #1 
    cp[i,2] <- p[sec[i],sp[i]] * (1 - p[prim[i],sp[i]]) 
    #  Seen by observer # 1 or observer #2 
    pcap[i] <- 1-((1-cp[i,1])*(1-cp[i,2])) 
    #  Not seen by either observer 
    pnocap[i] <- 1 - pcap[i] 
    #  Realizations 
    #  Number captured (ncap) and population size (N) 
    ncap[i] ~ dbin(pcap[i], round(N[site[i],sp[i],year[i]])) 
    #  Detection probabilities 
    y[i,] ~ dmulti(cp[i,1:2], ncap[i]) 
    } 
     
    } 
    ", fill = T) 
sink() 
############################################################################## 
# Data 
jags.dat <- list("y" = input_big8[,5:6], 
                 "prim" = input_big8$prim, 
                 "sec" = input_big8$sec, 
                 "n.obs" = nrow(input_big8), 
                 "n.observers" = n.observers, 
                 "n.sites" = length(unique(input_big8$site)), 
                 "site" = input_big8$site, 
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                 "n.sp" = length(unique(input_big8$sp)), 
                 "sp" = input_big8$sp, 
                 "ncap" = input_big8$ncap, 
                 "grazed" = grazed,  
                 "rangeq"=rangeq, 
                 "year"=input_big8$year) 
 
#  Monitor parameters 
 
pars <- c("loglam","graze.eff", 
          "year.eff","p") 
 
#  Initial values 
Nst <-matrix(NA, n.sites, n.sp) 
lambda <-175 
for (i in 1:n.sites){ 
  Nst[i,]<-rpois(n.sp, lambda) 
} 
 
Nst<-array(c(Nst,Nst),dim=c(n.sites, n.sp, 2)) 
 
p<-runif(n.observers) 
p<-cbind(p,p,p,p,p,p,p,p) 
pst<-matrix(p, ncol = ncol(p), dimnames = NULL) 
 
init.vals <- function(){list( 
  N = Nst, p = pst)} 
#  Call 
out <- jags(jags.dat, 
            init.vals, 
            pars, 
            "model_multinomial_multisp_MDAMext.txt", 
            n.chains = 3, 
            50000, 
            5000, 
            1) 
 
 
 
 
 
 
 
### MDAM Chapter 2 ### 
 
#Code for writing and running MDAM described in Chapter 2 
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############################################################################## 
  #  JAGS model to estimate parameters 
 
sink("model_multinomial_multisp_RE_cov_Ch2.txt") 
cat(" 
    model{ 
    #  Priors 
     
    #  RE on site to account for overdispersion 
    sd.site ~ dunif(0, 100) 
    tau.site <- 1/(sd.site^2) 
    for(i in 1:n.sites){ 
    site.eff[i] ~ dnorm(0, tau.site) 
    } 
     
    # Fixed effect on year and biomass potential 
    for(i in 1:n.sp){   
    year.eff[i] ~ dnorm(0, 0.01) 
    biom.eff[i]~ dnorm(0, 0.01) 
    } 
     
    #  Grazing effect and mean abundance prior (i.e. intercept) 
    for(i in 1:n.sp){ 
    graze.eff[i] ~ dnorm(0, 0.01) 
    loglam[i] ~ dnorm(0, 0.01)  
    lambda[i] <- exp(loglam[i]) 
    } 
     
    #  Site abundance linear predictor 
    for(i in 1:n.sites){ 
    for(j in 1:n.sp){ 
    for (k in 1:2){  
    mu.lambda[i,j,k] <- exp(loglam[j] + graze.eff[j] * grazed[i] + biom.eff[j] * biom[i] + site.eff[i] 
+ year.eff[j]*(k-1)) 
     
    #  Site abundance 
    N[i,j,k] ~ dpois(mu.lambda[i,j,k]) 
    } 
    } 
    } 
     
    #  Individual observer detection probability, treat like a regression 
    #  similar to the calculation of N above if covariates desired 
    for(i in 1:n.observers){ 
    for (j in 1:n.sp){  
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    p[i,j] ~ dnorm(0, 0.001) 
    } 
    } 
     
    #  Primary likelihood 
    for(i in 1:n.obs){ 
    #  Indices always follow site, reps, species order 
    #  Capture probabilities 
    #  Seen by observer #1 
    cp[i,1] <- p[prim[i],sp[i]] 
    #  Seen by observer #2 and not seen by observer #1 
    cp[i,2] <- p[sec[i],sp[i]] * (1 - p[prim[i],sp[i]]) 
    #  Seen by somebody 
    pcap[i] <- 1-((1-cp[i,1])*(1-cp[i,2])) 
    #  Not seen by either observer 
    pnocap[i] <- 1 - pcap[i] 
    #  Realizations 
    #  Number captured (ncap) and population size (N) 
    ncap[i] ~ dbin(pcap[i], round(N[site[i],sp[i],year[i]])) 
    #  Detection probabilities 
    y[i,] ~ dmulti(cp[i,1:2], ncap[i]) 
    } 
     
    } 
    ", fill = T) 
sink() 
##############################################################################
## 
# Data 
jags.dat <- list("y" = input_big8[,5:6], 
                 "prim" = input_big8$prim, 
                 "sec" = input_big8$sec, 
                 "n.obs" = nrow(input_big8), 
                 "n.observers" = n.observers, 
                 "n.sites" = length(unique(input_big8$site)), 
                 "site" = input_big8$site, 
                 "n.sp" = length(unique(input_big8$sp)), 
                 "sp" = input_big8$sp, 
                 "ncap" = input_big8$ncap, 
                 "grazed" = grazed,  
                 "biom"=biom, 
                 "year"=input_big8$year) 
 
#  Monitor parameters 
pars <- c("loglam","graze.eff","rq.eff", 
          "year.eff","p","N") 
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#  Initial values 
Nst <-matrix(NA, n.sites, n.sp) 
lambda <-175 
for (i in 1:n.sites){ 
  Nst[i,]<-rpois(n.sp, lambda) 
} 
 
Nst<-array(c(Nst,Nst),dim=c(n.sites, n.sp, 2)) 
 
p<-runif(n.observers) 
p<-cbind(p,p,p,p,p,p,p,p) 
pst<-matrix(p, ncol = ncol(p), dimnames = NULL) 
 
init.vals <- function(){list( 
  N = Nst, p = pst)} 
#  Call 
out <- jags(jags.dat, 
            init.vals, 
            pars, 
            "model_multinomial_multisp_RE_cov_Ch2.txt", 
            n.chains = 3, 
            50000, 
            5000, 
            1) 
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Introduction 
My master’s research examines the effects of grazing management and environmental factors 

on songbird community structure. There are two grazing management systems that I am investigating: 

season-long grazing and rest-rotation grazing. Season-long grazing involves keeping livestock in the 

same pasture for an entire grazing season, which usually lasts from May through November method, 

and rest-rotation grazing involves rotating livestock through multiple pastures over the grazing season. 

Each of these grazing systems in my study area is exclusively associated with a land ownership type: 

season-long grazing occurs only on public lands owned by the Bureau of Land Management (BLM); rest-

rotation grazing occurs only on private land as part of the Sage Grouse Initiative (SGI), a program run by 

the National Resource Conservation Service (NRCS). I am interested in separating out the effects of 

grazing system and environmental factors, which relies on the assumption that the land potential, or 

potential to produce a certain set of vegetation characteristics, are equal. On multiple occasions, various 

parties have brought up the point that the landownership (and associated land use history) tied to each 

type of grazing may be reflective of an inherent difference in potential or quality. In particular, there is 

concern that public land is often more degraded than private land; a commonly held belief is that 

private land boundaries were delineated based on productivity and what was not desired was absorbed 

into the public land system. My goal is to address this underlying assumption, through answering these 

two questions:   

Question 1: Is there a difference between land potential on private and public land in my study 

area outside of Roundup, Montana? 

Question 2: If there is a difference, how large is that difference and is it statistically significant?  I 

would like to quantify the difference so that I can account for this in future analysis of changes 

in avian communities. 

I initiated an independent study project to address these objectives in the beginning of Spring 

semester of 2014 at the University of Montana. This report is designed to serve as a summary of the 

course during the spring and summer of 2014 and present the final results of the analysis.  

 

Independent Study Course Summary 
This course was a multi-month collaborative process that drew from many experts and data 

sources. My advisor, Dr. Victoria Dreitz, assistant professor and director of the Avian Science Center at 

the University of Montana oversaw the progress of the study to make sure it adhered to University of 
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Montana standards. Mary Manning, regional vegetation ecologist with the United States Forest Service 

(USFS), was the primary point of contact for rangeland science. Mrs. Manning and I met multiple times 

over the Spring 2014 semester to review information on rangeland science, methods for assessing range 

quality, ecological site descriptions, and to develop a method address this question. Mrs. Manning 

assigned reading and two written assignments, a formal write up of my course objectives and a write up 

about different ways to measure vegetation cover to provide a foundation in rangeland ecology. I 

sought additional input from rangeland experts Krist Walstad and Kirt Waltstead, rangeland 

management specialist with NRCS in Roundup and Bozeman, respectively. They advised me on current 

NRCS methods, including similarity indices, and provided supplemental information about the data 

available in the NRCS Soil Data Viewer 6.1. In addition, William Drummond, soil scientist with NRCS in 

Bozeman, provided guidance on landscape productivity metrics from the NRCS Soil Data Viewer 6.1. Dr. 

Paul Lukacs, professor at the University of Montana, provided advice on sampling design and statistical 

problems. Finally, Joe Smith, Ph.D. student at the University of Montana, provided assistance in spatial 

analysis.  

Over the course I explored two general methods of addressing these questions. The first was 

looking at range quality metrics that are based on all land use history to date. The second was looking at 

range quality metrics based on land potential derived from physical characteristics of the landscape. 

Rangeland health assessments and similarity index calculations are two methods in this first category 

that were developed by NRCS. Both use current conditions compared with a reference state, which is 

described by an ecological site description (ESD), to determine range quality. ESDs are classifications of 

rangeland and forest soils and vegetation, and are widely used by a variety of federal agencies. 

Rangeland health assessments and similarity indices differ in how they calculate departure from 

reference state; the former uses a qualitative assessment (outlined in Interpreting Indicators of 

Rangeland Health version 4 (Pellant et al. 2005)) and the latter uses a quantitative assessment 

(calculated as vegetation percent similarity). I decided not to use these because I had no way of 

accurately accounting for the difference in land use history between the two land types I was 

comparing. In addition, the logistics of implementing these methods were challenging. Both of these 

metrics rely on the mapping of ecological sites prior to evaluation, which takes a considerable amount of 

effort. With 21 possible ecological sites within my study area (NCRS 2014), mapping these ecological 

sites and then performing this analysis would have been unrealistic given the timeline of my master’s 

research.  
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Due to these constraints I selected two methods in the second category, based on land 

potential, to use in my analysis. Land productivity and wetness index calculations are methods that use 

physical characteristics to estimate potential of the land to produce vegetation. They inherently do not 

heavily rely on metrics that include past land use or management because they are primarily based on 

physical properties resulting from soil or topography. Rangeland productivity is defined by the NRCS as 

“the amount of vegetation that can be expected to grow annually in a well-managed area (NRCS 2011).” 

The measurement is given as pounds per acre of dry vegetation and is highly dependent on soil type in 

areas where climate and topography are similar, like my study area. The compound topographic index 

(CTI) is a steady state wetness index that takes into account soil type (and the associated soil attributes 

that contribute to water holding properties), topography, and upstream water availability. This is a 

useful metric because water availability is an important determinant for range productivity (Humphrey 

1962).  

My final goal in this course was to take these two metrics and use them to assess whether there 

was a difference in range quality, measured as land potential, between private and public land in my 

study area.  

Study Area  
The study area for this project is located in rangelands outside of Roundup, Montana, on private 

and public lands. I had access to 44,019 ha of public land and 25,566 ha of private land and for the initial 

sampling set up of my project. I randomly selected a total of 1,000 ha from each land type (in the form 

of 80 25 ha plots). This provided two spatial scales for inference:  the regional scale and local scale, 

respectively. Cattle are the primary domestic livestock that use these lands, although sheep are 

common as well. The vegetation in the study area includes areas dominated by sagebrush (Artemsia 

tridentata), as well as those dominated by native and non-native grassland vegetation. Appendix 1 

contains an overview map of the study area, as well as pictures of the vegetation types present in the 

study area.  

Methods 
I conducted a series of visual summary and statistical tests to test if private and public land 

differed in my study area. I used histograms, boxplots, and bar graphs to compare productivity metrics 

and CTI by land ownership. I used a t-test in addition to these visual comparisons to test if the means of 

these metrics were significantly different. I conducted these analyses for productivity at the two spatial 

scales, regional and local, mentioned above. Complete CTI data was not available for both scales, so I 
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only used the local scale for this analysis. All analyses were conducted with the program R version 3.1.1 

(R Core Team 2012). Appendix 2 contains the annotated R code for these summaries and tests.  

Results 
The results show that on average private land is more productive and has a higher moisture 

content than public land (Table 1). Results of visual comparisons using histograms showed that in both 

the productivity and the CTI that there is considerable overlap between the range of values for public 

and private lands in this area (Figure 1A – 1C). Results using boxplots showed a similar pattern: both 

productivity and the CTI showed a large amount of overlap but private land produced higher values for 

both metrics than public land (Figure 2A – 2C). I analyzed the productivity data at multiple scales and 

although the values were higher at the local scale than at the regional scale, the values showed the 

same pattern based on land ownership: private land has a statistically significant (P-value <0.0005) 

higher average productivity than public land (Table 1). Data for the CTI was limited to the local scale; 

however, because the local scale was a random sample of the regional scale, I am confident that the 

local scale is representative of the regional scale. Data for the CTI showed a similar pattern to that of the 

productivity. The histogram comparison revealed considerable overlap between the range of values 

(Figure 1C), but boxplot comparison (Figure 2C) and the t-test showed that the means were significantly 

different (P-value <0.0005) and higher on private land (Table 1).  

Discussion 
Private land is higher quality than public land when multiple productivity metrics are considered. 

This is most likely due to a history of land use, where private land was selected because it was the most 

productive, and land put under public management was often unproductive and unclaimed land. It is 

important to note that these metrics used have little to do with past land use because they focused 

potential defined by physical characteristics. There are multiple additional metrics that could be used, 

but the agreement of these two provides solid evidence that private land is of higher quality. In addition, 

the agreement of the multiple scales suggests this is a pattern that occurs beyond the local scale.  
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Tables and Figures 
 

Table 1. Comparison of Rangeland Quality Metrics by Ownership. A comparison of range 
productivity (published by NRCS in the Soil Data Viewer 6.1) and the compound topographic 
index (CTI) by land ownership. The mean, standard deviation (SD), 95% confidence interval (CI), 
and results of the t-test are presented. The p-value associated with the t-test measures how 
significant the difference in means between the two groups is (< 0.05 is considered significant). 
The comparison of rangeland productivity is presented for both the regional scale and local 
scale. The comparison of CTI is presented only for the local scale due to limited data availability.   
 Public Land Private Land T-Test 
 

Mean SD 95% CI Mean SD 95% CI 

Statistically 
significant 
difference 
in means 

p-
value 

Range 
Productivity 
(regional 
scale) 

1038.45 329.46 1036.89-
1040.01 1182.53 288.66 1180.76-

1184.3 

Yes 2.2e-16 

Range 
Productivity 
(local scale) 

1129.22 253.34 1121.38-
1137.06 1209.75 294.58 1200.64-

1281.86 

Yes 2.2e-16 

CTI (local 
scale) 8.126 1.896 0.02997 8.354 1.940 0.03068 

Yes 1.057e-
07 
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Figure 1A. Comparison of Rangeland Productivity by Land Ownership at the Regional Scale. 

Rangeland productivity (measured in pounds of dry vegetation produced per acre) as reported 

by the NRCS Soil Data Viewer 6.1 on public and private lands outside of Roundup, Montana.  
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Figure 1B. Comparison of Rangeland Productivity by Land Ownership at the Local Scale. 

Rangeland productivity (measured in pounds of dry vegetation produced per acre) as reported 

by the NRCS Soil Data Viewer 6.1 on public and private lands outside of Roundup, Montana.  
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Figure 1C. Comparison of CTI by Land Ownership at the Local Scale. Compound topographic 

index (CTI) on public and private lands outside of Roundup, Montana.  
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Figure 2A. Comparison of Mean Rangeland Productivity by Land Ownership at the Regional 

Scale. Rangeland productivity (measured in pounds of dry vegetation per acre) as reported by 

the NRCS Soil Data Viewer 6.1 on public and private lands outside of Roundup, Montana. The 

values shown are as follows: white dots represent the mean; the horizontal black line represents 

the median; the box contains the first through third quartiles; the vertical black lines represent 

the smallest and largest values in the data set; and the solid black dots outside represent 

outliers in the data sets. 
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Figure 2B. Comparison of Mean Rangeland Productivity by Land Ownership at the Local Scale. 

Rangeland productivity (measured in pounds of dry vegetation produced per acre) as reported 

by the NRCS Soil Data Viewer 6.1 on public and private lands outside of Roundup, Montana. The 

values shown are as follows: white dots represent the mean; the horizontal black line represents 

the median; the box contains the first through third quartiles; the vertical black lines represent 

the smallest and largest values in the data set; and the solid black dots outside represent 

outliers in the data sets. 
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Figure 2C. Comparison of CTI by Land Ownership at the Local Scale. Compound topographic 

index (CTI) on public and private lands outside of Roundup, Montana. The values shown are as 

follows: white dots represents the mean; the thick black line represents the median; the box 

contains the first through third quartiles; the black vertical lines represent the smallest and 

largest values in the data set; and the solid black dots outside represent outliers in the data sets. 
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Appendix 1: Study Area Figures 
 

 

Figure 1. Overview of the study area. An overview of the study area, including the relative position in 
Montana. BLM lands are shown in yellow. I am not able to disclose the exact location of the private 
lands because of information sharing agreements, but the study area polygon shows the general area 
examined. 
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Figure 2. Habitat variability in the study area. An example of the mix of sagebrush and grassland 
vegetation in the study area. 

 

Figure 3. Non-native species in the study area. An example of the crested wheat grass vegetation in the 
study area. 
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Figure 4. Short grass in the study area. An example of the short grass vegetation in the study area. 

 
Figure 5. Sagebrush in the study area. An example of the sagebrush vegetation in the study area.
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Appendix 2: Annotated R-Code 
 
#Code to quantify differences in land condition/range quality between public and private land in study 
area 
#For 2014 independent study project. 
#Spatial code developed with Joe Smith on 8/27/14 
 
#Load necessary packages 
library(raster) 
library(rgdal) 
 
#Load productivity (prod) raster file created in ArcMap 10.0 
#Created raster file of merged soil productivity data (for GV and MS counties) in R 
prod <-raster("C:/Users/jessie.golding/Documents/Songbird Research/2014 Field/2014 
GIS/rangeprod_65and66_raster.tif") 
 
#Set wd so you don't have to continually type out that long file path... 
setwd("C:/Users/jessie.golding/Documents/Songbird Research/2014 Field/2014 GIS") 
 
#Commands to look at the raster dataset 
plot(prod) 
class(prod) 
str(prod) 
extent(prod) 
hist(prod) 
 
#Create raster of land ownership file. The advantage of doing this here rather than in ArcMap is that  
#this uses the template of the productivity raster (prod) to create the new raster so that you easily 
directly compare them. 
own <-shapefile("ppclipped.shp") 
ownr <- rasterize(own, prod, field="OWNER_TYPE") 
plot(ownr) 
 
#Summarize productivity by land ownership type. 0=private, 1=public 
prod_private <- prod[ownr == 0] 
str(prod_private) 
hist(prod_private) 
plot(density(prod_private)) 
prod_blm <- prod[ownr == 1] 
 
summary(prod_blm) 
summary(prod_private) 
 
#Combine data into a single data frame (prod) for easier plotting 
d1<-data.frame(prod_blm) 
d1$own <-"BLM" 
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names(d1)[1]<-"prod" 
 
d2<-data.frame(prod_private) 
d2$own <-"Private" 
names(d2)[1]<-"prod" 
 
prod <-rbind(d1,d2) 
 
#Plot results  
#Plot both histograms on one graph 
#The scale commands were put in there to adjust the scale and the expand command makes it so there 
are not weird spaces around the edge of the plot 
library(ggplot2) 
ggplot(prod, aes(x=prod, fill=own)) +  
  geom_histogram(binwidth=100, alpha=.5, position="identity")+ 
  scale_x_continuous(limits=c(0,2500),expand=c(0,0))+ 
  scale_y_continuous(expand=c(0,0))+ 
  xlab("Productivity (lbs. per acre)")+ 
  ylab("Frequency")+ 
  scale_fill_discrete(name="Ownership")+ 
  ggtitle("Rangeland Productivity by Land Ownership") + 
  theme_bw() 
 
#Create a boxplot to visually compare difference in means 
ggplot(prod, aes(x=own, y=prod, fill=own)) +  
  geom_boxplot() + 
  stat_summary(fun.y = "mean", geom = "point", shape= 23, size= 3, fill= "white") + 
  xlab("Ownership")+   
  ylab("Productivity (lbs. per acre)")+ 
  ggtitle("Rangeland Productivity by Land Ownership") +  
  guides(fill=FALSE)+ 
  theme_bw() 
 
#Summary statistics using a summary function from online for summary stats 
#http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/ 
 
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, 
                      conf.interval=.95, .drop=TRUE) { 
  require(plyr) 
   
  # New version of length which can handle NA's: if na.rm==T, don't count them 
  length2 <- function (x, na.rm=FALSE) { 
    if (na.rm) sum(!is.na(x)) 
    else       length(x) 
  } 
   
  # This does the summary. For each group's data frame, return a vector with 
  # N, mean, and sd 
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  datac <- ddply(data, groupvars, .drop=.drop, 
                 .fun = function(xx, col) { 
                   c(N    = length2(xx[[col]], na.rm=na.rm), 
                     mean = mean   (xx[[col]], na.rm=na.rm), 
                     sd   = sd     (xx[[col]], na.rm=na.rm) 
                   ) 
                 }, 
                 measurevar 
  ) 
   
  # Rename the "mean" column     
  datac <- rename(datac, c("mean" = measurevar)) 
   
  datac$se <- datac$sd / sqrt(datac$N)  # Calculate standard error of the mean 
   
  # Confidence interval multiplier for standard error 
  # Calculate t-statistic for confidence interval:  
  # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1 
  ciMult <- qt(conf.interval/2 + .5, datac$N-1) 
  datac$ci <- datac$se * ciMult 
   
  return(datac) 
} 
 
#Run the summarySE function on the productivity data 
prod_summarystats <-summarySE(prod, measurevar="prod", groupvars=c("own")) 
 
 
#Create a point chart to compare means with SE included 
ggplot(prod_summarystats, aes(x=own, y=prod)) +  
  scale_y_continuous(limits=c(1030, max(prod_summarystats$prod + 
prod_summarystats$se)),breaks=c(1050,1100,1150,1200)) + 
  geom_errorbar(aes(ymin=prod-se, ymax=prod+se), width=.1) + 
  geom_line() + 
  geom_point()+ 
  xlab("Ownership") +   
  ylab("Productivity (lbs. per acre)") + 
  ggtitle("Mean Rangeland Productivity by Land Ownership") +  
  theme_bw()            
 
#Use t test to test for difference in means 
t.test(prod_private, prod_blm) 
 
#Test for same result on plot scale 
#Create raster of land ownership file using the ownwership file with just plots 
#This is the same process as above 
 
own_plot <-shapefile("ppclipped_plots.shp") 
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own_plot_r <- rasterize(own_plot, prod, field="OWNER_TYPE") 
plot(own_plot_r) 
 
 
prod_private_plot <- prod[own_plot_r == 0] 
prod_blm_plot <- prod[own_plot_r == 1] 
 
 
#Combine data into a single data frame (prod) for easier plotting 
d3<-data.frame(prod_blm_plot) 
d3$own <-"BLM" 
names(d3)[1]<-"prod" 
 
d4<-data.frame(prod_private_plot) 
d4$own <-"Private" 
names(d4)[1]<-"prod" 
 
prod_plot <-rbind(d3,d4) 
 
#Plot the results using a histogram 
ggplot(prod_plot, aes(x=prod, fill=own)) +  
  geom_histogram(binwidth=100, alpha=.5, position="identity")+ 
  scale_x_continuous(limits=c(0,2500),expand=c(0,0))+scale_y_continuous(expand=c(0,0))+ 
  xlab("Productivity (lbs. per acre)")+ 
  ylab("Frequency")+ 
  scale_fill_discrete(name="Ownership")+ 
  ggtitle("Rangeland Productivity by Land Ownership")+ 
  theme_bw()   
 
#Create a boxplot to visually compare difference in means 
ggplot(prod_plot, aes(x=own, y=prod, fill=own)) +  
  geom_boxplot() + 
  stat_summary(fun.y = "mean", geom = "point", shape= 23, size= 3, fill= "white") + 
  xlab("Ownership") + 
  ylab("Productivity (lbs. per acre)") + 
  ggtitle("Rangeland Productivity by Land Ownership") +  
  guides(fill=FALSE) + 
  theme_bw()  
 
#Run summary stats for final check 
prod_plot_summarystats <-summarySE(prod_plot, measurevar="prod", groupvars=c("own")) 
 
#Use t test to test for difference in means 
t.test(prod_private_plot, prod_blm_plot) 
 
#CTI - compound topographic index - analysis 
cti <-raster("cti_50x50_3.tif") 
plot(cti) 
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#Summarize cti by land ownership type. 0=private, 1=public. 
#Use the already pulled in own_plot shapefile but create a raster file based on the new cti raster file  
#Remember that the own_plot file is only at the plot-level sampling scale 
ownr2 <- rasterize(own_plot, cti, field="OWNER_TYPE") 
plot(ownr2) 
 
#Summarize cti by land ownership type. 0=private, 1=public 
cti_private <- cti[ownr2 == 0] 
cti_blm <- cti[ownr2 == 1] 
 
#Combine data into a single data frame (cti) for easier plotting 
d5<-data.frame(cti_blm) 
d5$own <-"BLM" 
names(d5)[1]<-"cti" 
 
d6<-data.frame(cti_private) 
d6$own <-"Private" 
names(d6)[1]<-"cti" 
 
cti <-rbind(d5,d6) 
 
#Plot the results 
ggplot(cti, aes(x=cti, fill=own)) +  
  geom_histogram(alpha=.5, position="identity")+ 
  xlab("CTI")+ 
  ylab("Frequency")+scale_fill_discrete(name="Ownership")+ 
  ggtitle("CTI by Land Ownership")+ 
  theme_bw() 
 
#Create a boxplot to visually compare difference in means 
ggplot(cti, aes(x=own, y=cti, fill=own)) +  
  geom_boxplot() + 
  stat_summary(fun.y = "mean", geom = "point", shape= 23, size= 3, fill= "white") + 
  xlab("Ownership") + 
  ylab("CTI") + 
  ggtitle("CTI by Land Ownership") +  
  guides(fill=FALSE) + 
  theme_bw() 
 
#Run summary stats for final check 
cti_summarystats <-summarySE(cti, measurevar="cti", groupvars=c("own")) 
 
#Use t test to test for difference in means of cti 
t.test(cti_private, cti_blm) 
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